Metamath Proof Explorer


Theorem partsuc

Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024)

Ref Expression
Assertion partsuc Could not format assertion : No typesetting found for |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) with typecode |-

Proof

Step Hyp Ref Expression
1 ressucdifsn R suc A R A = R A
2 sucdifsn suc A A = A
3 parteq12 Could not format ( ( ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( suc A \ { A } ) = A ) -> ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) ) : No typesetting found for |- ( ( ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( suc A \ { A } ) = A ) -> ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) ) with typecode |-
4 1 2 3 mp2an Could not format ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) : No typesetting found for |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) with typecode |-