Metamath Proof Explorer


Theorem pc0

Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pc0 P P pCnt 0 = +∞

Proof

Step Hyp Ref Expression
1 0z 0
2 zq 0 0
3 1 2 ax-mp 0
4 iftrue r = 0 if r = 0 +∞ ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y < = +∞
5 4 adantl p = P r = 0 if r = 0 +∞ ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y < = +∞
6 df-pc pCnt = p , r if r = 0 +∞ ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y <
7 pnfex +∞ V
8 5 6 7 ovmpoa P 0 P pCnt 0 = +∞
9 3 8 mpan2 P P pCnt 0 = +∞