Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
The prime count function
pc1
Next ⟩
pcqcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
pc1
Description:
Value of the prime count function at 1.
(Contributed by
Mario Carneiro
, 23-Feb-2014)
Ref
Expression
Assertion
pc1
⊢
P
∈
ℙ
→
P
pCnt
1
=
0
Proof
Step
Hyp
Ref
Expression
1
1z
⊢
1
∈
ℤ
2
ax-1ne0
⊢
1
≠
0
3
eqid
⊢
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
=
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
4
3
pczpre
⊢
P
∈
ℙ
∧
1
∈
ℤ
∧
1
≠
0
→
P
pCnt
1
=
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
5
1
2
4
mpanr12
⊢
P
∈
ℙ
→
P
pCnt
1
=
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
6
prmuz2
⊢
P
∈
ℙ
→
P
∈
ℤ
≥
2
7
eqid
⊢
1
=
1
8
eqid
⊢
n
∈
ℕ
0
|
P
n
∥
1
=
n
∈
ℕ
0
|
P
n
∥
1
9
8
3
pcpre1
⊢
P
∈
ℤ
≥
2
∧
1
=
1
→
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
=
0
10
6
7
9
sylancl
⊢
P
∈
ℙ
→
sup
n
∈
ℕ
0
|
P
n
∥
1
ℝ
<
=
0
11
5
10
eqtrd
⊢
P
∈
ℙ
→
P
pCnt
1
=
0