Metamath Proof Explorer


Theorem pc1

Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pc1 P P pCnt 1 = 0

Proof

Step Hyp Ref Expression
1 1z 1
2 ax-1ne0 1 0
3 eqid sup n 0 | P n 1 < = sup n 0 | P n 1 <
4 3 pczpre P 1 1 0 P pCnt 1 = sup n 0 | P n 1 <
5 1 2 4 mpanr12 P P pCnt 1 = sup n 0 | P n 1 <
6 prmuz2 P P 2
7 eqid 1 = 1
8 eqid n 0 | P n 1 = n 0 | P n 1
9 8 3 pcpre1 P 2 1 = 1 sup n 0 | P n 1 < = 0
10 6 7 9 sylancl P sup n 0 | P n 1 < = 0
11 5 10 eqtrd P P pCnt 1 = 0