Metamath Proof Explorer


Theorem pc11

Description: The prime count function, viewed as a function from NN to ( NN ^m Prime ) , is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pc11 A 0 B 0 A = B p p pCnt A = p pCnt B

Proof

Step Hyp Ref Expression
1 oveq2 A = B p pCnt A = p pCnt B
2 1 ralrimivw A = B p p pCnt A = p pCnt B
3 nn0z A 0 A
4 nn0z B 0 B
5 zq A A
6 pcxcl p A p pCnt A *
7 5 6 sylan2 p A p pCnt A *
8 zq B B
9 pcxcl p B p pCnt B *
10 8 9 sylan2 p B p pCnt B *
11 7 10 anim12dan p A B p pCnt A * p pCnt B *
12 xrletri3 p pCnt A * p pCnt B * p pCnt A = p pCnt B p pCnt A p pCnt B p pCnt B p pCnt A
13 11 12 syl p A B p pCnt A = p pCnt B p pCnt A p pCnt B p pCnt B p pCnt A
14 13 ancoms A B p p pCnt A = p pCnt B p pCnt A p pCnt B p pCnt B p pCnt A
15 14 ralbidva A B p p pCnt A = p pCnt B p p pCnt A p pCnt B p pCnt B p pCnt A
16 r19.26 p p pCnt A p pCnt B p pCnt B p pCnt A p p pCnt A p pCnt B p p pCnt B p pCnt A
17 15 16 bitrdi A B p p pCnt A = p pCnt B p p pCnt A p pCnt B p p pCnt B p pCnt A
18 pc2dvds A B A B p p pCnt A p pCnt B
19 pc2dvds B A B A p p pCnt B p pCnt A
20 19 ancoms A B B A p p pCnt B p pCnt A
21 18 20 anbi12d A B A B B A p p pCnt A p pCnt B p p pCnt B p pCnt A
22 17 21 bitr4d A B p p pCnt A = p pCnt B A B B A
23 3 4 22 syl2an A 0 B 0 p p pCnt A = p pCnt B A B B A
24 dvdseq A 0 B 0 A B B A A = B
25 24 ex A 0 B 0 A B B A A = B
26 23 25 sylbid A 0 B 0 p p pCnt A = p pCnt B A = B
27 2 26 impbid2 A 0 B 0 A = B p p pCnt A = p pCnt B