Step |
Hyp |
Ref |
Expression |
1 |
|
pcdvdstr |
|
2 |
1
|
ancoms |
|
3 |
2
|
ralrimiva |
|
4 |
3
|
3expia |
|
5 |
|
oveq2 |
|
6 |
5
|
breq1d |
|
7 |
6
|
ralbidv |
|
8 |
|
breq1 |
|
9 |
7 8
|
imbi12d |
|
10 |
|
gcddvds |
|
11 |
10
|
simpld |
|
12 |
|
gcdcl |
|
13 |
12
|
nn0zd |
|
14 |
|
simpl |
|
15 |
|
dvdsabsb |
|
16 |
13 14 15
|
syl2anc |
|
17 |
11 16
|
mpbid |
|
18 |
17
|
adantr |
|
19 |
|
simpl |
|
20 |
19
|
necon3ai |
|
21 |
|
gcdn0cl |
|
22 |
20 21
|
sylan2 |
|
23 |
22
|
nnzd |
|
24 |
22
|
nnne0d |
|
25 |
|
nnabscl |
|
26 |
25
|
adantlr |
|
27 |
26
|
nnzd |
|
28 |
|
dvdsval2 |
|
29 |
23 24 27 28
|
syl3anc |
|
30 |
18 29
|
mpbid |
|
31 |
|
nnre |
|
32 |
|
nngt0 |
|
33 |
31 32
|
jca |
|
34 |
|
nnre |
|
35 |
|
nngt0 |
|
36 |
34 35
|
jca |
|
37 |
|
divgt0 |
|
38 |
33 36 37
|
syl2an |
|
39 |
26 22 38
|
syl2anc |
|
40 |
|
elnnz |
|
41 |
30 39 40
|
sylanbrc |
|
42 |
|
elnn1uz2 |
|
43 |
41 42
|
sylib |
|
44 |
10
|
simprd |
|
45 |
44
|
adantr |
|
46 |
|
breq1 |
|
47 |
45 46
|
syl5ibcom |
|
48 |
26
|
nncnd |
|
49 |
22
|
nncnd |
|
50 |
|
1cnd |
|
51 |
48 49 50 24
|
divmuld |
|
52 |
49
|
mulid1d |
|
53 |
52
|
eqeq1d |
|
54 |
51 53
|
bitrd |
|
55 |
|
absdvdsb |
|
56 |
55
|
adantr |
|
57 |
47 54 56
|
3imtr4d |
|
58 |
|
exprmfct |
|
59 |
|
simprl |
|
60 |
26
|
adantr |
|
61 |
60
|
nnzd |
|
62 |
60
|
nnne0d |
|
63 |
22
|
adantr |
|
64 |
|
pcdiv |
|
65 |
59 61 62 63 64
|
syl121anc |
|
66 |
|
simplll |
|
67 |
|
zq |
|
68 |
66 67
|
syl |
|
69 |
|
pcabs |
|
70 |
59 68 69
|
syl2anc |
|
71 |
70
|
oveq1d |
|
72 |
65 71
|
eqtrd |
|
73 |
|
simprr |
|
74 |
41
|
adantr |
|
75 |
|
pcelnn |
|
76 |
59 74 75
|
syl2anc |
|
77 |
73 76
|
mpbird |
|
78 |
72 77
|
eqeltrrd |
|
79 |
59 63
|
pccld |
|
80 |
79
|
nn0zd |
|
81 |
|
simplr |
|
82 |
|
pczcl |
|
83 |
59 66 81 82
|
syl12anc |
|
84 |
83
|
nn0zd |
|
85 |
|
znnsub |
|
86 |
80 84 85
|
syl2anc |
|
87 |
78 86
|
mpbird |
|
88 |
79
|
nn0red |
|
89 |
83
|
nn0red |
|
90 |
88 89
|
ltnled |
|
91 |
87 90
|
mpbid |
|
92 |
|
simpllr |
|
93 |
|
nprmdvds1 |
|
94 |
93
|
ad2antrl |
|
95 |
|
gcdid0 |
|
96 |
66 95
|
syl |
|
97 |
96
|
oveq2d |
|
98 |
48
|
adantr |
|
99 |
98 62
|
dividd |
|
100 |
97 99
|
eqtrd |
|
101 |
100
|
breq2d |
|
102 |
94 101
|
mtbird |
|
103 |
|
oveq2 |
|
104 |
103
|
oveq2d |
|
105 |
104
|
breq2d |
|
106 |
73 105
|
syl5ibcom |
|
107 |
106
|
necon3bd |
|
108 |
102 107
|
mpd |
|
109 |
|
pczcl |
|
110 |
59 92 108 109
|
syl12anc |
|
111 |
110
|
nn0red |
|
112 |
|
lemin |
|
113 |
89 89 111 112
|
syl3anc |
|
114 |
|
pcgcd |
|
115 |
59 66 92 114
|
syl3anc |
|
116 |
115
|
breq2d |
|
117 |
89
|
leidd |
|
118 |
117
|
biantrurd |
|
119 |
113 116 118
|
3bitr4rd |
|
120 |
91 119
|
mtbird |
|
121 |
120
|
expr |
|
122 |
121
|
reximdva |
|
123 |
|
rexnal |
|
124 |
122 123
|
syl6ib |
|
125 |
58 124
|
syl5 |
|
126 |
57 125
|
orim12d |
|
127 |
43 126
|
mpd |
|
128 |
127
|
ord |
|
129 |
128
|
con4d |
|
130 |
|
2prm |
|
131 |
130
|
ne0ii |
|
132 |
|
r19.2z |
|
133 |
131 132
|
mpan |
|
134 |
|
id |
|
135 |
|
zq |
|
136 |
135
|
adantl |
|
137 |
|
pcxcl |
|
138 |
134 136 137
|
syl2anr |
|
139 |
|
pnfge |
|
140 |
138 139
|
syl |
|
141 |
140
|
biantrurd |
|
142 |
|
pc0 |
|
143 |
142
|
adantl |
|
144 |
143
|
breq1d |
|
145 |
|
pnfxr |
|
146 |
|
xrletri3 |
|
147 |
138 145 146
|
sylancl |
|
148 |
141 144 147
|
3bitr4d |
|
149 |
|
pnfnre |
|
150 |
149
|
neli |
|
151 |
|
eleq1 |
|
152 |
150 151
|
mtbiri |
|
153 |
109
|
nn0red |
|
154 |
153
|
adantll |
|
155 |
154
|
an4s |
|
156 |
155
|
expr |
|
157 |
156
|
necon1bd |
|
158 |
152 157
|
syl5 |
|
159 |
148 158
|
sylbid |
|
160 |
159
|
rexlimdva |
|
161 |
|
0dvds |
|
162 |
161
|
adantl |
|
163 |
160 162
|
sylibrd |
|
164 |
133 163
|
syl5 |
|
165 |
9 129 164
|
pm2.61ne |
|
166 |
4 165
|
impbid |
|