Step |
Hyp |
Ref |
Expression |
1 |
|
pcadd2.1 |
|
2 |
|
pcadd2.2 |
|
3 |
|
pcadd2.3 |
|
4 |
|
pcadd2.4 |
|
5 |
|
pcxcl |
|
6 |
1 2 5
|
syl2anc |
|
7 |
|
qaddcl |
|
8 |
2 3 7
|
syl2anc |
|
9 |
|
pcxcl |
|
10 |
1 8 9
|
syl2anc |
|
11 |
|
pcxcl |
|
12 |
1 3 11
|
syl2anc |
|
13 |
6 12 4
|
xrltled |
|
14 |
1 2 3 13
|
pcadd |
|
15 |
|
qnegcl |
|
16 |
3 15
|
syl |
|
17 |
|
xrltnle |
|
18 |
6 12 17
|
syl2anc |
|
19 |
4 18
|
mpbid |
|
20 |
1
|
adantr |
|
21 |
16
|
adantr |
|
22 |
8
|
adantr |
|
23 |
|
pcneg |
|
24 |
1 3 23
|
syl2anc |
|
25 |
24
|
breq1d |
|
26 |
25
|
biimpar |
|
27 |
20 21 22 26
|
pcadd |
|
28 |
27
|
ex |
|
29 |
|
qcn |
|
30 |
3 29
|
syl |
|
31 |
30
|
negcld |
|
32 |
|
qcn |
|
33 |
2 32
|
syl |
|
34 |
31 33 30
|
add12d |
|
35 |
31 30
|
addcomd |
|
36 |
30
|
negidd |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
33
|
addid1d |
|
40 |
34 38 39
|
3eqtrd |
|
41 |
40
|
oveq2d |
|
42 |
24 41
|
breq12d |
|
43 |
28 42
|
sylibd |
|
44 |
19 43
|
mtod |
|
45 |
|
xrltnle |
|
46 |
10 12 45
|
syl2anc |
|
47 |
44 46
|
mpbird |
|
48 |
10 12 47
|
xrltled |
|
49 |
48 24
|
breqtrrd |
|
50 |
1 8 16 49
|
pcadd |
|
51 |
33 30 31
|
addassd |
|
52 |
36
|
oveq2d |
|
53 |
51 52 39
|
3eqtrd |
|
54 |
53
|
oveq2d |
|
55 |
50 54
|
breqtrd |
|
56 |
6 10 14 55
|
xrletrid |
|