Step |
Hyp |
Ref |
Expression |
1 |
|
pcaddlem.1 |
|
2 |
|
pcaddlem.2 |
|
3 |
|
pcaddlem.3 |
|
4 |
|
pcaddlem.4 |
|
5 |
|
pcaddlem.5 |
|
6 |
|
pcaddlem.6 |
|
7 |
|
pcaddlem.7 |
|
8 |
|
pcaddlem.8 |
|
9 |
|
oveq2 |
|
10 |
9
|
breq2d |
|
11 |
|
eluzel2 |
|
12 |
4 11
|
syl |
|
13 |
12
|
zred |
|
14 |
13
|
adantr |
|
15 |
|
prmnn |
|
16 |
1 15
|
syl |
|
17 |
16
|
nncnd |
|
18 |
16
|
nnne0d |
|
19 |
|
eluzelz |
|
20 |
4 19
|
syl |
|
21 |
20 12
|
zsubcld |
|
22 |
17 18 21
|
expclzd |
|
23 |
7
|
simpld |
|
24 |
23
|
zcnd |
|
25 |
8
|
simpld |
|
26 |
25
|
nncnd |
|
27 |
25
|
nnne0d |
|
28 |
22 24 26 27
|
divassd |
|
29 |
28
|
oveq2d |
|
30 |
5
|
simpld |
|
31 |
30
|
zcnd |
|
32 |
6
|
simpld |
|
33 |
32
|
nncnd |
|
34 |
22 24
|
mulcld |
|
35 |
32
|
nnne0d |
|
36 |
31 33 34 26 35 27
|
divadddivd |
|
37 |
29 36
|
eqtr3d |
|
38 |
37
|
oveq2d |
|
39 |
38
|
adantr |
|
40 |
1
|
adantr |
|
41 |
25
|
nnzd |
|
42 |
30 41
|
zmulcld |
|
43 |
|
uznn0sub |
|
44 |
4 43
|
syl |
|
45 |
16 44
|
nnexpcld |
|
46 |
45
|
nnzd |
|
47 |
46 23
|
zmulcld |
|
48 |
32
|
nnzd |
|
49 |
47 48
|
zmulcld |
|
50 |
42 49
|
zaddcld |
|
51 |
50
|
adantr |
|
52 |
17 18 12
|
expclzd |
|
53 |
52
|
mul01d |
|
54 |
|
oveq2 |
|
55 |
54
|
eqeq1d |
|
56 |
53 55
|
syl5ibrcom |
|
57 |
56
|
necon3d |
|
58 |
31 33 35
|
divcld |
|
59 |
24 26 27
|
divcld |
|
60 |
22 59
|
mulcld |
|
61 |
52 58 60
|
adddid |
|
62 |
12
|
zcnd |
|
63 |
20
|
zcnd |
|
64 |
62 63
|
pncan3d |
|
65 |
64
|
oveq2d |
|
66 |
|
expaddz |
|
67 |
17 18 12 21 66
|
syl22anc |
|
68 |
65 67
|
eqtr3d |
|
69 |
68
|
oveq1d |
|
70 |
52 22 59
|
mulassd |
|
71 |
3 69 70
|
3eqtrd |
|
72 |
2 71
|
oveq12d |
|
73 |
61 72
|
eqtr4d |
|
74 |
73
|
neeq1d |
|
75 |
37
|
neeq1d |
|
76 |
57 74 75
|
3imtr3d |
|
77 |
32 25
|
nnmulcld |
|
78 |
77
|
nncnd |
|
79 |
77
|
nnne0d |
|
80 |
78 79
|
div0d |
|
81 |
|
oveq1 |
|
82 |
81
|
eqeq1d |
|
83 |
80 82
|
syl5ibrcom |
|
84 |
83
|
necon3d |
|
85 |
76 84
|
syld |
|
86 |
85
|
imp |
|
87 |
77
|
adantr |
|
88 |
|
pcdiv |
|
89 |
40 51 86 87 88
|
syl121anc |
|
90 |
|
pcmul |
|
91 |
1 48 35 41 27 90
|
syl122anc |
|
92 |
6
|
simprd |
|
93 |
|
pceq0 |
|
94 |
1 32 93
|
syl2anc |
|
95 |
92 94
|
mpbird |
|
96 |
8
|
simprd |
|
97 |
|
pceq0 |
|
98 |
1 25 97
|
syl2anc |
|
99 |
96 98
|
mpbird |
|
100 |
95 99
|
oveq12d |
|
101 |
|
00id |
|
102 |
100 101
|
eqtrdi |
|
103 |
91 102
|
eqtrd |
|
104 |
103
|
oveq2d |
|
105 |
104
|
adantr |
|
106 |
|
pczcl |
|
107 |
40 51 86 106
|
syl12anc |
|
108 |
107
|
nn0cnd |
|
109 |
108
|
subid1d |
|
110 |
105 109
|
eqtrd |
|
111 |
39 89 110
|
3eqtrd |
|
112 |
111 107
|
eqeltrd |
|
113 |
|
nn0addge1 |
|
114 |
14 112 113
|
syl2anc |
|
115 |
|
nnq |
|
116 |
16 115
|
syl |
|
117 |
|
qexpclz |
|
118 |
116 18 12 117
|
syl3anc |
|
119 |
118
|
adantr |
|
120 |
17 18 12
|
expne0d |
|
121 |
120
|
adantr |
|
122 |
|
znq |
|
123 |
30 32 122
|
syl2anc |
|
124 |
|
qexpclz |
|
125 |
116 18 21 124
|
syl3anc |
|
126 |
|
znq |
|
127 |
23 25 126
|
syl2anc |
|
128 |
|
qmulcl |
|
129 |
125 127 128
|
syl2anc |
|
130 |
|
qaddcl |
|
131 |
123 129 130
|
syl2anc |
|
132 |
131
|
adantr |
|
133 |
74 57
|
sylbird |
|
134 |
133
|
imp |
|
135 |
|
pcqmul |
|
136 |
40 119 121 132 134 135
|
syl122anc |
|
137 |
73
|
oveq2d |
|
138 |
137
|
adantr |
|
139 |
|
pcid |
|
140 |
1 12 139
|
syl2anc |
|
141 |
140
|
oveq1d |
|
142 |
141
|
adantr |
|
143 |
136 138 142
|
3eqtr3d |
|
144 |
114 143
|
breqtrrd |
|
145 |
13
|
rexrd |
|
146 |
|
pnfge |
|
147 |
145 146
|
syl |
|
148 |
|
pc0 |
|
149 |
1 148
|
syl |
|
150 |
147 149
|
breqtrrd |
|
151 |
10 144 150
|
pm2.61ne |
|