Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|
2 |
|
nnnn0 |
|
3 |
2
|
3ad2ant1 |
|
4 |
3
|
faccld |
|
5 |
4
|
nnzd |
|
6 |
4
|
nnne0d |
|
7 |
|
fznn0sub |
|
8 |
7
|
3ad2ant2 |
|
9 |
8
|
faccld |
|
10 |
|
elfznn0 |
|
11 |
10
|
3ad2ant2 |
|
12 |
11
|
faccld |
|
13 |
9 12
|
nnmulcld |
|
14 |
|
pcdiv |
|
15 |
1 5 6 13 14
|
syl121anc |
|
16 |
|
bcval2 |
|
17 |
16
|
3ad2ant2 |
|
18 |
17
|
oveq2d |
|
19 |
|
fzfid |
|
20 |
|
nnre |
|
21 |
20
|
3ad2ant1 |
|
22 |
21
|
adantr |
|
23 |
|
simpl3 |
|
24 |
|
prmnn |
|
25 |
23 24
|
syl |
|
26 |
|
elfznn |
|
27 |
26
|
nnnn0d |
|
28 |
27
|
adantl |
|
29 |
25 28
|
nnexpcld |
|
30 |
22 29
|
nndivred |
|
31 |
30
|
flcld |
|
32 |
31
|
zcnd |
|
33 |
11
|
nn0red |
|
34 |
21 33
|
resubcld |
|
35 |
34
|
adantr |
|
36 |
35 29
|
nndivred |
|
37 |
36
|
flcld |
|
38 |
37
|
zcnd |
|
39 |
33
|
adantr |
|
40 |
39 29
|
nndivred |
|
41 |
40
|
flcld |
|
42 |
41
|
zcnd |
|
43 |
38 42
|
addcld |
|
44 |
19 32 43
|
fsumsub |
|
45 |
3
|
nn0zd |
|
46 |
|
uzid |
|
47 |
45 46
|
syl |
|
48 |
|
pcfac |
|
49 |
3 47 1 48
|
syl3anc |
|
50 |
11
|
nn0ge0d |
|
51 |
21 33
|
subge02d |
|
52 |
50 51
|
mpbid |
|
53 |
11
|
nn0zd |
|
54 |
45 53
|
zsubcld |
|
55 |
|
eluz |
|
56 |
54 45 55
|
syl2anc |
|
57 |
52 56
|
mpbird |
|
58 |
|
pcfac |
|
59 |
8 57 1 58
|
syl3anc |
|
60 |
|
elfzuz3 |
|
61 |
60
|
3ad2ant2 |
|
62 |
|
pcfac |
|
63 |
11 61 1 62
|
syl3anc |
|
64 |
59 63
|
oveq12d |
|
65 |
9
|
nnzd |
|
66 |
9
|
nnne0d |
|
67 |
12
|
nnzd |
|
68 |
12
|
nnne0d |
|
69 |
|
pcmul |
|
70 |
1 65 66 67 68 69
|
syl122anc |
|
71 |
19 38 42
|
fsumadd |
|
72 |
64 70 71
|
3eqtr4d |
|
73 |
49 72
|
oveq12d |
|
74 |
44 73
|
eqtr4d |
|
75 |
15 18 74
|
3eqtr4d |
|