Metamath Proof Explorer


Theorem pcbcctr

Description: Prime count of a central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Assertion pcbcctr N P P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N P k

Proof

Step Hyp Ref Expression
1 2nn 2
2 nnmulcl 2 N 2 N
3 1 2 mpan N 2 N
4 3 adantr N P 2 N
5 nnnn0 N N 0
6 fzctr N 0 N 0 2 N
7 5 6 syl N N 0 2 N
8 7 adantr N P N 0 2 N
9 simpr N P P
10 pcbc 2 N N 0 2 N P P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N N P k + N P k
11 4 8 9 10 syl3anc N P P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N N P k + N P k
12 nncn N N
13 12 2timesd N 2 N = N + N
14 12 12 13 mvrladdd N 2 N N = N
15 14 fvoveq1d N 2 N N P k = N P k
16 15 oveq1d N 2 N N P k + N P k = N P k + N P k
17 16 ad2antrr N P k 1 2 N 2 N N P k + N P k = N P k + N P k
18 nnre N N
19 18 ad2antrr N P k 1 2 N N
20 prmnn P P
21 20 adantl N P P
22 elfznn k 1 2 N k
23 22 nnnn0d k 1 2 N k 0
24 nnexpcl P k 0 P k
25 21 23 24 syl2an N P k 1 2 N P k
26 19 25 nndivred N P k 1 2 N N P k
27 26 flcld N P k 1 2 N N P k
28 27 zcnd N P k 1 2 N N P k
29 28 2timesd N P k 1 2 N 2 N P k = N P k + N P k
30 17 29 eqtr4d N P k 1 2 N 2 N N P k + N P k = 2 N P k
31 30 oveq2d N P k 1 2 N 2 N P k 2 N N P k + N P k = 2 N P k 2 N P k
32 31 sumeq2dv N P k = 1 2 N 2 N P k 2 N N P k + N P k = k = 1 2 N 2 N P k 2 N P k
33 11 32 eqtrd N P P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N P k