Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
simp2l |
|
3 |
|
simp3 |
|
4 |
|
znq |
|
5 |
2 3 4
|
syl2anc |
|
6 |
2
|
zcnd |
|
7 |
3
|
nncnd |
|
8 |
|
simp2r |
|
9 |
3
|
nnne0d |
|
10 |
6 7 8 9
|
divne0d |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 12
|
pcval |
|
14 |
1 5 10 13
|
syl12anc |
|
15 |
|
eqid |
|
16 |
15
|
pczpre |
|
17 |
16
|
3adant3 |
|
18 |
|
nnz |
|
19 |
|
nnne0 |
|
20 |
18 19
|
jca |
|
21 |
|
eqid |
|
22 |
21
|
pczpre |
|
23 |
20 22
|
sylan2 |
|
24 |
23
|
3adant2 |
|
25 |
17 24
|
oveq12d |
|
26 |
|
eqid |
|
27 |
25 26
|
jctil |
|
28 |
|
oveq1 |
|
29 |
28
|
eqeq2d |
|
30 |
|
breq2 |
|
31 |
30
|
rabbidv |
|
32 |
31
|
supeq1d |
|
33 |
32
|
oveq1d |
|
34 |
33
|
eqeq2d |
|
35 |
29 34
|
anbi12d |
|
36 |
|
oveq2 |
|
37 |
36
|
eqeq2d |
|
38 |
|
breq2 |
|
39 |
38
|
rabbidv |
|
40 |
39
|
supeq1d |
|
41 |
40
|
oveq2d |
|
42 |
41
|
eqeq2d |
|
43 |
37 42
|
anbi12d |
|
44 |
35 43
|
rspc2ev |
|
45 |
2 3 27 44
|
syl3anc |
|
46 |
|
ovex |
|
47 |
11 12
|
pceu |
|
48 |
1 5 10 47
|
syl12anc |
|
49 |
|
eqeq1 |
|
50 |
49
|
anbi2d |
|
51 |
50
|
2rexbidv |
|
52 |
51
|
iota2 |
|
53 |
46 48 52
|
sylancr |
|
54 |
45 53
|
mpbid |
|
55 |
14 54
|
eqtrd |
|