Metamath Proof Explorer


Theorem pcdvdstr

Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion pcdvdstr P A B A B P pCnt A P pCnt B

Proof

Step Hyp Ref Expression
1 0z 0
2 zq 0 0
3 1 2 ax-mp 0
4 pcxcl P 0 P pCnt 0 *
5 3 4 mpan2 P P pCnt 0 *
6 5 xrleidd P P pCnt 0 P pCnt 0
7 6 ad2antrr P A B A B A = 0 P pCnt 0 P pCnt 0
8 simpr P A B A B A = 0 A = 0
9 8 oveq2d P A B A B A = 0 P pCnt A = P pCnt 0
10 simplr3 P A B A B A = 0 A B
11 8 10 eqbrtrrd P A B A B A = 0 0 B
12 simplr2 P A B A B A = 0 B
13 0dvds B 0 B B = 0
14 12 13 syl P A B A B A = 0 0 B B = 0
15 11 14 mpbid P A B A B A = 0 B = 0
16 15 oveq2d P A B A B A = 0 P pCnt B = P pCnt 0
17 7 9 16 3brtr4d P A B A B A = 0 P pCnt A P pCnt B
18 prmnn P P
19 18 ad2antrr P A B A B A 0 P
20 simpll P A B A B A 0 P
21 simplr1 P A B A B A 0 A
22 simpr P A B A B A 0 A 0
23 pczcl P A A 0 P pCnt A 0
24 20 21 22 23 syl12anc P A B A B A 0 P pCnt A 0
25 19 24 nnexpcld P A B A B A 0 P P pCnt A
26 25 nnzd P A B A B A 0 P P pCnt A
27 simplr2 P A B A B A 0 B
28 pczdvds P A A 0 P P pCnt A A
29 20 21 22 28 syl12anc P A B A B A 0 P P pCnt A A
30 simplr3 P A B A B A 0 A B
31 26 21 27 29 30 dvdstrd P A B A B A 0 P P pCnt A B
32 pcdvdsb P B P pCnt A 0 P pCnt A P pCnt B P P pCnt A B
33 20 27 24 32 syl3anc P A B A B A 0 P pCnt A P pCnt B P P pCnt A B
34 31 33 mpbird P A B A B A 0 P pCnt A P pCnt B
35 17 34 pm2.61dane P A B A B P pCnt A P pCnt B