Metamath Proof Explorer


Theorem pceq0

Description: There are zero powers of a prime P in N iff P does not divide N . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pceq0 P N P pCnt N = 0 ¬ P N

Proof

Step Hyp Ref Expression
1 pcelnn P N P pCnt N P N
2 pccl P N P pCnt N 0
3 nnne0 P pCnt N P pCnt N 0
4 elnn0 P pCnt N 0 P pCnt N P pCnt N = 0
5 4 biimpi P pCnt N 0 P pCnt N P pCnt N = 0
6 5 ord P pCnt N 0 ¬ P pCnt N P pCnt N = 0
7 6 necon1ad P pCnt N 0 P pCnt N 0 P pCnt N
8 3 7 impbid2 P pCnt N 0 P pCnt N P pCnt N 0
9 2 8 syl P N P pCnt N P pCnt N 0
10 1 9 bitr3d P N P N P pCnt N 0
11 10 necon2bbid P N P pCnt N = 0 ¬ P N