| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcval.1 |
|
| 2 |
|
pcval.2 |
|
| 3 |
|
simprl |
|
| 4 |
|
elq |
|
| 5 |
3 4
|
sylib |
|
| 6 |
|
ovex |
|
| 7 |
|
biidd |
|
| 8 |
6 7
|
ceqsexv |
|
| 9 |
|
exancom |
|
| 10 |
8 9
|
bitr3i |
|
| 11 |
10
|
rexbii |
|
| 12 |
|
rexcom4 |
|
| 13 |
11 12
|
bitri |
|
| 14 |
13
|
rexbii |
|
| 15 |
|
rexcom4 |
|
| 16 |
14 15
|
bitri |
|
| 17 |
5 16
|
sylib |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
simp11l |
|
| 21 |
|
simp11r |
|
| 22 |
|
simp12 |
|
| 23 |
|
simp13l |
|
| 24 |
|
simp2 |
|
| 25 |
|
simp3l |
|
| 26 |
1 2 18 19 20 21 22 23 24 25
|
pceulem |
|
| 27 |
|
simp13r |
|
| 28 |
|
simp3r |
|
| 29 |
26 27 28
|
3eqtr4d |
|
| 30 |
29
|
3exp |
|
| 31 |
30
|
rexlimdvv |
|
| 32 |
31
|
3exp |
|
| 33 |
32
|
adantrl |
|
| 34 |
33
|
rexlimdvv |
|
| 35 |
34
|
impd |
|
| 36 |
35
|
alrimivv |
|
| 37 |
|
eqeq1 |
|
| 38 |
37
|
anbi2d |
|
| 39 |
38
|
2rexbidv |
|
| 40 |
|
oveq1 |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
|
breq2 |
|
| 43 |
42
|
rabbidv |
|
| 44 |
43
|
supeq1d |
|
| 45 |
1 44
|
eqtrid |
|
| 46 |
45
|
oveq1d |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
41 47
|
anbi12d |
|
| 49 |
48
|
rexbidv |
|
| 50 |
|
oveq2 |
|
| 51 |
50
|
eqeq2d |
|
| 52 |
|
breq2 |
|
| 53 |
52
|
rabbidv |
|
| 54 |
53
|
supeq1d |
|
| 55 |
2 54
|
eqtrid |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
51 57
|
anbi12d |
|
| 59 |
58
|
cbvrexvw |
|
| 60 |
49 59
|
bitrdi |
|
| 61 |
60
|
cbvrexvw |
|
| 62 |
39 61
|
bitrdi |
|
| 63 |
62
|
eu4 |
|
| 64 |
17 36 63
|
sylanbrc |
|