Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
|
2 |
|
pcval.2 |
|
3 |
|
simprl |
|
4 |
|
elq |
|
5 |
3 4
|
sylib |
|
6 |
|
ovex |
|
7 |
|
biidd |
|
8 |
6 7
|
ceqsexv |
|
9 |
|
exancom |
|
10 |
8 9
|
bitr3i |
|
11 |
10
|
rexbii |
|
12 |
|
rexcom4 |
|
13 |
11 12
|
bitri |
|
14 |
13
|
rexbii |
|
15 |
|
rexcom4 |
|
16 |
14 15
|
bitri |
|
17 |
5 16
|
sylib |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
simp11l |
|
21 |
|
simp11r |
|
22 |
|
simp12 |
|
23 |
|
simp13l |
|
24 |
|
simp2 |
|
25 |
|
simp3l |
|
26 |
1 2 18 19 20 21 22 23 24 25
|
pceulem |
|
27 |
|
simp13r |
|
28 |
|
simp3r |
|
29 |
26 27 28
|
3eqtr4d |
|
30 |
29
|
3exp |
|
31 |
30
|
rexlimdvv |
|
32 |
31
|
3exp |
|
33 |
32
|
adantrl |
|
34 |
33
|
rexlimdvv |
|
35 |
34
|
impd |
|
36 |
35
|
alrimivv |
|
37 |
|
eqeq1 |
|
38 |
37
|
anbi2d |
|
39 |
38
|
2rexbidv |
|
40 |
|
oveq1 |
|
41 |
40
|
eqeq2d |
|
42 |
|
breq2 |
|
43 |
42
|
rabbidv |
|
44 |
43
|
supeq1d |
|
45 |
1 44
|
eqtrid |
|
46 |
45
|
oveq1d |
|
47 |
46
|
eqeq2d |
|
48 |
41 47
|
anbi12d |
|
49 |
48
|
rexbidv |
|
50 |
|
oveq2 |
|
51 |
50
|
eqeq2d |
|
52 |
|
breq2 |
|
53 |
52
|
rabbidv |
|
54 |
53
|
supeq1d |
|
55 |
2 54
|
eqtrid |
|
56 |
55
|
oveq2d |
|
57 |
56
|
eqeq2d |
|
58 |
51 57
|
anbi12d |
|
59 |
58
|
cbvrexvw |
|
60 |
49 59
|
bitrdi |
|
61 |
60
|
cbvrexvw |
|
62 |
39 61
|
bitrdi |
|
63 |
62
|
eu4 |
|
64 |
17 36 63
|
sylanbrc |
|