Metamath Proof Explorer


Theorem pceulem

Description: Lemma for pceu . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcval.1 S = sup n 0 | P n x <
pcval.2 T = sup n 0 | P n y <
pceu.3 U = sup n 0 | P n s <
pceu.4 V = sup n 0 | P n t <
pceu.5 φ P
pceu.6 φ N 0
pceu.7 φ x y
pceu.8 φ N = x y
pceu.9 φ s t
pceu.10 φ N = s t
Assertion pceulem φ S T = U V

Proof

Step Hyp Ref Expression
1 pcval.1 S = sup n 0 | P n x <
2 pcval.2 T = sup n 0 | P n y <
3 pceu.3 U = sup n 0 | P n s <
4 pceu.4 V = sup n 0 | P n t <
5 pceu.5 φ P
6 pceu.6 φ N 0
7 pceu.7 φ x y
8 pceu.8 φ N = x y
9 pceu.9 φ s t
10 pceu.10 φ N = s t
11 7 simprd φ y
12 11 nncnd φ y
13 9 simpld φ s
14 13 zcnd φ s
15 12 14 mulcomd φ y s = s y
16 10 8 eqtr3d φ s t = x y
17 9 simprd φ t
18 17 nncnd φ t
19 7 simpld φ x
20 19 zcnd φ x
21 17 nnne0d φ t 0
22 11 nnne0d φ y 0
23 14 18 20 12 21 22 divmuleqd φ s t = x y s y = x t
24 16 23 mpbid φ s y = x t
25 15 24 eqtrd φ y s = x t
26 25 breq2d φ P z y s P z x t
27 26 rabbidv φ z 0 | P z y s = z 0 | P z x t
28 oveq2 n = z P n = P z
29 28 breq1d n = z P n y s P z y s
30 29 cbvrabv n 0 | P n y s = z 0 | P z y s
31 28 breq1d n = z P n x t P z x t
32 31 cbvrabv n 0 | P n x t = z 0 | P z x t
33 27 30 32 3eqtr4g φ n 0 | P n y s = n 0 | P n x t
34 33 supeq1d φ sup n 0 | P n y s < = sup n 0 | P n x t <
35 11 nnzd φ y
36 18 21 div0d φ 0 t = 0
37 oveq1 s = 0 s t = 0 t
38 37 eqeq1d s = 0 s t = 0 0 t = 0
39 36 38 syl5ibrcom φ s = 0 s t = 0
40 10 eqeq1d φ N = 0 s t = 0
41 39 40 sylibrd φ s = 0 N = 0
42 41 necon3d φ N 0 s 0
43 6 42 mpd φ s 0
44 eqid sup n 0 | P n y s < = sup n 0 | P n y s <
45 2 3 44 pcpremul P y y 0 s s 0 T + U = sup n 0 | P n y s <
46 5 35 22 13 43 45 syl122anc φ T + U = sup n 0 | P n y s <
47 12 22 div0d φ 0 y = 0
48 oveq1 x = 0 x y = 0 y
49 48 eqeq1d x = 0 x y = 0 0 y = 0
50 47 49 syl5ibrcom φ x = 0 x y = 0
51 8 eqeq1d φ N = 0 x y = 0
52 50 51 sylibrd φ x = 0 N = 0
53 52 necon3d φ N 0 x 0
54 6 53 mpd φ x 0
55 17 nnzd φ t
56 eqid sup n 0 | P n x t < = sup n 0 | P n x t <
57 1 4 56 pcpremul P x x 0 t t 0 S + V = sup n 0 | P n x t <
58 5 19 54 55 21 57 syl122anc φ S + V = sup n 0 | P n x t <
59 34 46 58 3eqtr4d φ T + U = S + V
60 prmuz2 P P 2
61 5 60 syl φ P 2
62 eqid n 0 | P n y = n 0 | P n y
63 62 2 pcprecl P 2 y y 0 T 0 P T y
64 63 simpld P 2 y y 0 T 0
65 61 35 22 64 syl12anc φ T 0
66 65 nn0cnd φ T
67 eqid n 0 | P n s = n 0 | P n s
68 67 3 pcprecl P 2 s s 0 U 0 P U s
69 68 simpld P 2 s s 0 U 0
70 61 13 43 69 syl12anc φ U 0
71 70 nn0cnd φ U
72 eqid n 0 | P n x = n 0 | P n x
73 72 1 pcprecl P 2 x x 0 S 0 P S x
74 73 simpld P 2 x x 0 S 0
75 61 19 54 74 syl12anc φ S 0
76 75 nn0cnd φ S
77 eqid n 0 | P n t = n 0 | P n t
78 77 4 pcprecl P 2 t t 0 V 0 P V t
79 78 simpld P 2 t t 0 V 0
80 61 55 21 79 syl12anc φ V 0
81 80 nn0cnd φ V
82 66 71 76 81 addsubeq4d φ T + U = S + V S T = U V
83 59 82 mpbid φ S T = U V