| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcval.1 |
|
| 2 |
|
pcval.2 |
|
| 3 |
|
pceu.3 |
|
| 4 |
|
pceu.4 |
|
| 5 |
|
pceu.5 |
|
| 6 |
|
pceu.6 |
|
| 7 |
|
pceu.7 |
|
| 8 |
|
pceu.8 |
|
| 9 |
|
pceu.9 |
|
| 10 |
|
pceu.10 |
|
| 11 |
7
|
simprd |
|
| 12 |
11
|
nncnd |
|
| 13 |
9
|
simpld |
|
| 14 |
13
|
zcnd |
|
| 15 |
12 14
|
mulcomd |
|
| 16 |
10 8
|
eqtr3d |
|
| 17 |
9
|
simprd |
|
| 18 |
17
|
nncnd |
|
| 19 |
7
|
simpld |
|
| 20 |
19
|
zcnd |
|
| 21 |
17
|
nnne0d |
|
| 22 |
11
|
nnne0d |
|
| 23 |
14 18 20 12 21 22
|
divmuleqd |
|
| 24 |
16 23
|
mpbid |
|
| 25 |
15 24
|
eqtrd |
|
| 26 |
25
|
breq2d |
|
| 27 |
26
|
rabbidv |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
breq1d |
|
| 30 |
29
|
cbvrabv |
|
| 31 |
28
|
breq1d |
|
| 32 |
31
|
cbvrabv |
|
| 33 |
27 30 32
|
3eqtr4g |
|
| 34 |
33
|
supeq1d |
|
| 35 |
11
|
nnzd |
|
| 36 |
18 21
|
div0d |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
36 38
|
syl5ibrcom |
|
| 40 |
10
|
eqeq1d |
|
| 41 |
39 40
|
sylibrd |
|
| 42 |
41
|
necon3d |
|
| 43 |
6 42
|
mpd |
|
| 44 |
|
eqid |
|
| 45 |
2 3 44
|
pcpremul |
|
| 46 |
5 35 22 13 43 45
|
syl122anc |
|
| 47 |
12 22
|
div0d |
|
| 48 |
|
oveq1 |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
47 49
|
syl5ibrcom |
|
| 51 |
8
|
eqeq1d |
|
| 52 |
50 51
|
sylibrd |
|
| 53 |
52
|
necon3d |
|
| 54 |
6 53
|
mpd |
|
| 55 |
17
|
nnzd |
|
| 56 |
|
eqid |
|
| 57 |
1 4 56
|
pcpremul |
|
| 58 |
5 19 54 55 21 57
|
syl122anc |
|
| 59 |
34 46 58
|
3eqtr4d |
|
| 60 |
|
prmuz2 |
|
| 61 |
5 60
|
syl |
|
| 62 |
|
eqid |
|
| 63 |
62 2
|
pcprecl |
|
| 64 |
63
|
simpld |
|
| 65 |
61 35 22 64
|
syl12anc |
|
| 66 |
65
|
nn0cnd |
|
| 67 |
|
eqid |
|
| 68 |
67 3
|
pcprecl |
|
| 69 |
68
|
simpld |
|
| 70 |
61 13 43 69
|
syl12anc |
|
| 71 |
70
|
nn0cnd |
|
| 72 |
|
eqid |
|
| 73 |
72 1
|
pcprecl |
|
| 74 |
73
|
simpld |
|
| 75 |
61 19 54 74
|
syl12anc |
|
| 76 |
75
|
nn0cnd |
|
| 77 |
|
eqid |
|
| 78 |
77 4
|
pcprecl |
|
| 79 |
78
|
simpld |
|
| 80 |
61 55 21 79
|
syl12anc |
|
| 81 |
80
|
nn0cnd |
|
| 82 |
66 71 76 81
|
addsubeq4d |
|
| 83 |
59 82
|
mpbid |
|