Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
|
2 |
|
pcval.2 |
|
3 |
|
pceu.3 |
|
4 |
|
pceu.4 |
|
5 |
|
pceu.5 |
|
6 |
|
pceu.6 |
|
7 |
|
pceu.7 |
|
8 |
|
pceu.8 |
|
9 |
|
pceu.9 |
|
10 |
|
pceu.10 |
|
11 |
7
|
simprd |
|
12 |
11
|
nncnd |
|
13 |
9
|
simpld |
|
14 |
13
|
zcnd |
|
15 |
12 14
|
mulcomd |
|
16 |
10 8
|
eqtr3d |
|
17 |
9
|
simprd |
|
18 |
17
|
nncnd |
|
19 |
7
|
simpld |
|
20 |
19
|
zcnd |
|
21 |
17
|
nnne0d |
|
22 |
11
|
nnne0d |
|
23 |
14 18 20 12 21 22
|
divmuleqd |
|
24 |
16 23
|
mpbid |
|
25 |
15 24
|
eqtrd |
|
26 |
25
|
breq2d |
|
27 |
26
|
rabbidv |
|
28 |
|
oveq2 |
|
29 |
28
|
breq1d |
|
30 |
29
|
cbvrabv |
|
31 |
28
|
breq1d |
|
32 |
31
|
cbvrabv |
|
33 |
27 30 32
|
3eqtr4g |
|
34 |
33
|
supeq1d |
|
35 |
11
|
nnzd |
|
36 |
18 21
|
div0d |
|
37 |
|
oveq1 |
|
38 |
37
|
eqeq1d |
|
39 |
36 38
|
syl5ibrcom |
|
40 |
10
|
eqeq1d |
|
41 |
39 40
|
sylibrd |
|
42 |
41
|
necon3d |
|
43 |
6 42
|
mpd |
|
44 |
|
eqid |
|
45 |
2 3 44
|
pcpremul |
|
46 |
5 35 22 13 43 45
|
syl122anc |
|
47 |
12 22
|
div0d |
|
48 |
|
oveq1 |
|
49 |
48
|
eqeq1d |
|
50 |
47 49
|
syl5ibrcom |
|
51 |
8
|
eqeq1d |
|
52 |
50 51
|
sylibrd |
|
53 |
52
|
necon3d |
|
54 |
6 53
|
mpd |
|
55 |
17
|
nnzd |
|
56 |
|
eqid |
|
57 |
1 4 56
|
pcpremul |
|
58 |
5 19 54 55 21 57
|
syl122anc |
|
59 |
34 46 58
|
3eqtr4d |
|
60 |
|
prmuz2 |
|
61 |
5 60
|
syl |
|
62 |
|
eqid |
|
63 |
62 2
|
pcprecl |
|
64 |
63
|
simpld |
|
65 |
61 35 22 64
|
syl12anc |
|
66 |
65
|
nn0cnd |
|
67 |
|
eqid |
|
68 |
67 3
|
pcprecl |
|
69 |
68
|
simpld |
|
70 |
61 13 43 69
|
syl12anc |
|
71 |
70
|
nn0cnd |
|
72 |
|
eqid |
|
73 |
72 1
|
pcprecl |
|
74 |
73
|
simpld |
|
75 |
61 19 54 74
|
syl12anc |
|
76 |
75
|
nn0cnd |
|
77 |
|
eqid |
|
78 |
77 4
|
pcprecl |
|
79 |
78
|
simpld |
|
80 |
61 55 21 79
|
syl12anc |
|
81 |
80
|
nn0cnd |
|
82 |
66 71 76 81
|
addsubeq4d |
|
83 |
59 82
|
mpbid |
|