Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
|
oveq1 |
|
4 |
2 3
|
eqeq12d |
|
5 |
|
oveq2 |
|
6 |
5
|
oveq2d |
|
7 |
|
oveq1 |
|
8 |
6 7
|
eqeq12d |
|
9 |
|
oveq2 |
|
10 |
9
|
oveq2d |
|
11 |
|
oveq1 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq2d |
|
15 |
|
oveq1 |
|
16 |
14 15
|
eqeq12d |
|
17 |
|
oveq2 |
|
18 |
17
|
oveq2d |
|
19 |
|
oveq1 |
|
20 |
18 19
|
eqeq12d |
|
21 |
|
pc1 |
|
22 |
21
|
adantr |
|
23 |
|
qcn |
|
24 |
23
|
ad2antrl |
|
25 |
24
|
exp0d |
|
26 |
25
|
oveq2d |
|
27 |
|
pcqcl |
|
28 |
27
|
zcnd |
|
29 |
28
|
mul02d |
|
30 |
22 26 29
|
3eqtr4d |
|
31 |
|
oveq1 |
|
32 |
|
expp1 |
|
33 |
24 32
|
sylan |
|
34 |
33
|
oveq2d |
|
35 |
|
simpll |
|
36 |
|
simplrl |
|
37 |
|
simplrr |
|
38 |
|
nn0z |
|
39 |
38
|
adantl |
|
40 |
|
qexpclz |
|
41 |
36 37 39 40
|
syl3anc |
|
42 |
24
|
adantr |
|
43 |
42 37 39
|
expne0d |
|
44 |
|
pcqmul |
|
45 |
35 41 43 36 37 44
|
syl122anc |
|
46 |
34 45
|
eqtrd |
|
47 |
|
nn0cn |
|
48 |
47
|
adantl |
|
49 |
28
|
adantr |
|
50 |
48 49
|
adddirp1d |
|
51 |
46 50
|
eqeq12d |
|
52 |
31 51
|
syl5ibr |
|
53 |
52
|
ex |
|
54 |
|
negeq |
|
55 |
|
nnnn0 |
|
56 |
|
expneg |
|
57 |
24 55 56
|
syl2an |
|
58 |
57
|
oveq2d |
|
59 |
|
simpll |
|
60 |
55 41
|
sylan2 |
|
61 |
55 43
|
sylan2 |
|
62 |
|
pcrec |
|
63 |
59 60 61 62
|
syl12anc |
|
64 |
58 63
|
eqtrd |
|
65 |
|
nncn |
|
66 |
|
mulneg1 |
|
67 |
65 28 66
|
syl2anr |
|
68 |
64 67
|
eqeq12d |
|
69 |
54 68
|
syl5ibr |
|
70 |
69
|
ex |
|
71 |
4 8 12 16 20 30 53 70
|
zindd |
|
72 |
71
|
3impia |
|