| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
|
fvoveq1 |
|
| 5 |
4
|
sumeq2sdv |
|
| 6 |
3 5
|
eqeq12d |
|
| 7 |
1 6
|
raleqbidv |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
fveq2 |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
fvoveq1 |
|
| 13 |
12
|
sumeq2sdv |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
9 14
|
raleqbidv |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
fvoveq1 |
|
| 21 |
20
|
sumeq2sdv |
|
| 22 |
19 21
|
eqeq12d |
|
| 23 |
17 22
|
raleqbidv |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
fveq2 |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
|
fvoveq1 |
|
| 29 |
28
|
sumeq2sdv |
|
| 30 |
27 29
|
eqeq12d |
|
| 31 |
25 30
|
raleqbidv |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
fzfid |
|
| 34 |
|
sumz |
|
| 35 |
34
|
olcs |
|
| 36 |
33 35
|
syl |
|
| 37 |
|
0nn0 |
|
| 38 |
|
elfznn |
|
| 39 |
38
|
nnnn0d |
|
| 40 |
|
nn0uz |
|
| 41 |
39 40
|
eleqtrdi |
|
| 42 |
41
|
adantl |
|
| 43 |
|
simpll |
|
| 44 |
|
pcfaclem |
|
| 45 |
37 42 43 44
|
mp3an2i |
|
| 46 |
45
|
sumeq2dv |
|
| 47 |
|
fac0 |
|
| 48 |
47
|
oveq2i |
|
| 49 |
|
pc1 |
|
| 50 |
48 49
|
eqtrid |
|
| 51 |
50
|
adantr |
|
| 52 |
36 46 51
|
3eqtr4rd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
nn0z |
|
| 55 |
54
|
adantr |
|
| 56 |
|
uzid |
|
| 57 |
|
peano2uz |
|
| 58 |
55 56 57
|
3syl |
|
| 59 |
|
uzss |
|
| 60 |
|
ssralv |
|
| 61 |
58 59 60
|
3syl |
|
| 62 |
|
oveq1 |
|
| 63 |
|
simpll |
|
| 64 |
|
facp1 |
|
| 65 |
63 64
|
syl |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
simplr |
|
| 68 |
|
faccl |
|
| 69 |
|
nnz |
|
| 70 |
|
nnne0 |
|
| 71 |
69 70
|
jca |
|
| 72 |
63 68 71
|
3syl |
|
| 73 |
|
nn0p1nn |
|
| 74 |
|
nnz |
|
| 75 |
|
nnne0 |
|
| 76 |
74 75
|
jca |
|
| 77 |
63 73 76
|
3syl |
|
| 78 |
|
pcmul |
|
| 79 |
67 72 77 78
|
syl3anc |
|
| 80 |
66 79
|
eqtr2d |
|
| 81 |
63
|
adantr |
|
| 82 |
81
|
nn0zd |
|
| 83 |
|
prmnn |
|
| 84 |
83
|
ad2antlr |
|
| 85 |
|
nnexpcl |
|
| 86 |
84 39 85
|
syl2an |
|
| 87 |
|
fldivp1 |
|
| 88 |
82 86 87
|
syl2anc |
|
| 89 |
|
elfzuz |
|
| 90 |
63 73
|
syl |
|
| 91 |
67 90
|
pccld |
|
| 92 |
91
|
nn0zd |
|
| 93 |
|
elfz5 |
|
| 94 |
89 92 93
|
syl2anr |
|
| 95 |
|
simpllr |
|
| 96 |
81 73
|
syl |
|
| 97 |
96
|
nnzd |
|
| 98 |
39
|
adantl |
|
| 99 |
|
pcdvdsb |
|
| 100 |
95 97 98 99
|
syl3anc |
|
| 101 |
94 100
|
bitr2d |
|
| 102 |
101
|
ifbid |
|
| 103 |
88 102
|
eqtrd |
|
| 104 |
103
|
sumeq2dv |
|
| 105 |
|
fzfid |
|
| 106 |
63
|
nn0red |
|
| 107 |
|
peano2re |
|
| 108 |
106 107
|
syl |
|
| 109 |
108
|
adantr |
|
| 110 |
109 86
|
nndivred |
|
| 111 |
110
|
flcld |
|
| 112 |
111
|
zcnd |
|
| 113 |
106
|
adantr |
|
| 114 |
113 86
|
nndivred |
|
| 115 |
114
|
flcld |
|
| 116 |
115
|
zcnd |
|
| 117 |
105 112 116
|
fsumsub |
|
| 118 |
|
fzfi |
|
| 119 |
91
|
nn0red |
|
| 120 |
|
eluzelz |
|
| 121 |
120
|
adantl |
|
| 122 |
121
|
zred |
|
| 123 |
|
prmuz2 |
|
| 124 |
123
|
ad2antlr |
|
| 125 |
90
|
nnnn0d |
|
| 126 |
|
bernneq3 |
|
| 127 |
124 125 126
|
syl2anc |
|
| 128 |
119 108
|
letrid |
|
| 129 |
128
|
ord |
|
| 130 |
90
|
nnzd |
|
| 131 |
|
pcdvdsb |
|
| 132 |
67 130 125 131
|
syl3anc |
|
| 133 |
84 125
|
nnexpcld |
|
| 134 |
133
|
nnzd |
|
| 135 |
|
dvdsle |
|
| 136 |
134 90 135
|
syl2anc |
|
| 137 |
133
|
nnred |
|
| 138 |
137 108
|
lenltd |
|
| 139 |
136 138
|
sylibd |
|
| 140 |
132 139
|
sylbid |
|
| 141 |
129 140
|
syld |
|
| 142 |
127 141
|
mt4d |
|
| 143 |
|
eluzle |
|
| 144 |
143
|
adantl |
|
| 145 |
119 108 122 142 144
|
letrd |
|
| 146 |
|
eluz |
|
| 147 |
92 121 146
|
syl2anc |
|
| 148 |
145 147
|
mpbird |
|
| 149 |
|
fzss2 |
|
| 150 |
148 149
|
syl |
|
| 151 |
|
sumhash |
|
| 152 |
118 150 151
|
sylancr |
|
| 153 |
|
hashfz1 |
|
| 154 |
91 153
|
syl |
|
| 155 |
152 154
|
eqtrd |
|
| 156 |
104 117 155
|
3eqtr3d |
|
| 157 |
105 112
|
fsumcl |
|
| 158 |
105 116
|
fsumcl |
|
| 159 |
119
|
recnd |
|
| 160 |
157 158 159
|
subaddd |
|
| 161 |
156 160
|
mpbid |
|
| 162 |
80 161
|
eqeq12d |
|
| 163 |
62 162
|
imbitrid |
|
| 164 |
163
|
ralimdva |
|
| 165 |
61 164
|
syld |
|
| 166 |
165
|
ex |
|
| 167 |
166
|
a2d |
|
| 168 |
8 16 24 32 53 167
|
nn0ind |
|
| 169 |
168
|
imp |
|
| 170 |
|
oveq2 |
|
| 171 |
170
|
sumeq1d |
|
| 172 |
171
|
eqeq2d |
|
| 173 |
172
|
rspcv |
|
| 174 |
169 173
|
syl5 |
|
| 175 |
174
|
3impib |
|
| 176 |
175
|
3com12 |
|