Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
2
|
eqeq1d |
|
4 |
|
simpl1 |
|
5 |
|
simp2 |
|
6 |
5
|
adantr |
|
7 |
|
simpl3 |
|
8 |
|
simprr |
|
9 |
|
simpr |
|
10 |
9
|
necon3ai |
|
11 |
8 10
|
syl |
|
12 |
|
gcdn0cl |
|
13 |
6 7 11 12
|
syl21anc |
|
14 |
13
|
nnzd |
|
15 |
|
gcddvds |
|
16 |
6 7 15
|
syl2anc |
|
17 |
16
|
simpld |
|
18 |
|
pcdvdstr |
|
19 |
4 14 6 17 18
|
syl13anc |
|
20 |
|
zq |
|
21 |
6 20
|
syl |
|
22 |
|
pcxcl |
|
23 |
4 21 22
|
syl2anc |
|
24 |
|
pczcl |
|
25 |
4 7 8 24
|
syl12anc |
|
26 |
25
|
nn0red |
|
27 |
|
pcge0 |
|
28 |
4 6 27
|
syl2anc |
|
29 |
|
ge0gtmnf |
|
30 |
23 28 29
|
syl2anc |
|
31 |
|
simprl |
|
32 |
|
xrre |
|
33 |
23 26 30 31 32
|
syl22anc |
|
34 |
|
pnfnre |
|
35 |
34
|
neli |
|
36 |
|
pc0 |
|
37 |
4 36
|
syl |
|
38 |
37
|
eleq1d |
|
39 |
35 38
|
mtbiri |
|
40 |
|
oveq2 |
|
41 |
40
|
eleq1d |
|
42 |
41
|
notbid |
|
43 |
39 42
|
syl5ibrcom |
|
44 |
43
|
necon2ad |
|
45 |
33 44
|
mpd |
|
46 |
|
pczdvds |
|
47 |
4 6 45 46
|
syl12anc |
|
48 |
|
pczcl |
|
49 |
4 6 45 48
|
syl12anc |
|
50 |
|
pcdvdsb |
|
51 |
4 7 49 50
|
syl3anc |
|
52 |
31 51
|
mpbid |
|
53 |
|
prmnn |
|
54 |
4 53
|
syl |
|
55 |
54 49
|
nnexpcld |
|
56 |
55
|
nnzd |
|
57 |
|
dvdsgcd |
|
58 |
56 6 7 57
|
syl3anc |
|
59 |
47 52 58
|
mp2and |
|
60 |
|
pcdvdsb |
|
61 |
4 14 49 60
|
syl3anc |
|
62 |
59 61
|
mpbird |
|
63 |
4 13
|
pccld |
|
64 |
63
|
nn0red |
|
65 |
64 33
|
letri3d |
|
66 |
19 62 65
|
mpbir2and |
|
67 |
66
|
anassrs |
|
68 |
|
gcdid0 |
|
69 |
5 68
|
syl |
|
70 |
69
|
oveq2d |
|
71 |
|
pcabs |
|
72 |
20 71
|
sylan2 |
|
73 |
72
|
3adant3 |
|
74 |
70 73
|
eqtrd |
|
75 |
74
|
adantr |
|
76 |
3 67 75
|
pm2.61ne |
|