| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|
| 2 |
|
pcidlem |
|
| 3 |
|
prmnn |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
nncnd |
|
| 6 |
|
simprl |
|
| 7 |
6
|
recnd |
|
| 8 |
|
nnnn0 |
|
| 9 |
8
|
ad2antll |
|
| 10 |
|
expneg2 |
|
| 11 |
5 7 9 10
|
syl3anc |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
simpl |
|
| 14 |
|
1zzd |
|
| 15 |
|
ax-1ne0 |
|
| 16 |
15
|
a1i |
|
| 17 |
4 9
|
nnexpcld |
|
| 18 |
|
pcdiv |
|
| 19 |
13 14 16 17 18
|
syl121anc |
|
| 20 |
|
pc1 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
pcidlem |
|
| 23 |
9 22
|
syldan |
|
| 24 |
21 23
|
oveq12d |
|
| 25 |
|
df-neg |
|
| 26 |
7
|
negnegd |
|
| 27 |
25 26
|
eqtr3id |
|
| 28 |
24 27
|
eqtrd |
|
| 29 |
19 28
|
eqtrd |
|
| 30 |
12 29
|
eqtrd |
|
| 31 |
2 30
|
jaodan |
|
| 32 |
1 31
|
sylan2b |
|