Metamath Proof Explorer


Theorem pcidlem

Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Assertion pcidlem P A 0 P pCnt P A = A

Proof

Step Hyp Ref Expression
1 simpl P A 0 P
2 prmnn P P
3 1 2 syl P A 0 P
4 simpr P A 0 A 0
5 3 4 nnexpcld P A 0 P A
6 1 5 pccld P A 0 P pCnt P A 0
7 6 nn0red P A 0 P pCnt P A
8 7 leidd P A 0 P pCnt P A P pCnt P A
9 5 nnzd P A 0 P A
10 pcdvdsb P P A P pCnt P A 0 P pCnt P A P pCnt P A P P pCnt P A P A
11 1 9 6 10 syl3anc P A 0 P pCnt P A P pCnt P A P P pCnt P A P A
12 8 11 mpbid P A 0 P P pCnt P A P A
13 3 6 nnexpcld P A 0 P P pCnt P A
14 13 nnzd P A 0 P P pCnt P A
15 dvdsle P P pCnt P A P A P P pCnt P A P A P P pCnt P A P A
16 14 5 15 syl2anc P A 0 P P pCnt P A P A P P pCnt P A P A
17 12 16 mpd P A 0 P P pCnt P A P A
18 3 nnred P A 0 P
19 6 nn0zd P A 0 P pCnt P A
20 nn0z A 0 A
21 20 adantl P A 0 A
22 prmuz2 P P 2
23 eluz2gt1 P 2 1 < P
24 1 22 23 3syl P A 0 1 < P
25 18 19 21 24 leexp2d P A 0 P pCnt P A A P P pCnt P A P A
26 17 25 mpbird P A 0 P pCnt P A A
27 iddvds P A P A P A
28 9 27 syl P A 0 P A P A
29 pcdvdsb P P A A 0 A P pCnt P A P A P A
30 1 9 4 29 syl3anc P A 0 A P pCnt P A P A P A
31 28 30 mpbird P A 0 A P pCnt P A
32 nn0re A 0 A
33 32 adantl P A 0 A
34 7 33 letri3d P A 0 P pCnt P A = A P pCnt P A A A P pCnt P A
35 26 31 34 mpbir2and P A 0 P pCnt P A = A