Metamath Proof Explorer


Theorem pclbtwnN

Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclid.s S = PSubSp K
pclid.c U = PCl K
Assertion pclbtwnN K V X S Y X X U Y X = U Y

Proof

Step Hyp Ref Expression
1 pclid.s S = PSubSp K
2 pclid.c U = PCl K
3 simprr K V X S Y X X U Y X U Y
4 simpll K V X S Y X X U Y K V
5 simprl K V X S Y X X U Y Y X
6 eqid Atoms K = Atoms K
7 6 1 psubssat K V X S X Atoms K
8 7 adantr K V X S Y X X U Y X Atoms K
9 6 2 pclssN K V Y X X Atoms K U Y U X
10 4 5 8 9 syl3anc K V X S Y X X U Y U Y U X
11 1 2 pclidN K V X S U X = X
12 11 adantr K V X S Y X X U Y U X = X
13 10 12 sseqtrd K V X S Y X X U Y U Y X
14 3 13 eqssd K V X S Y X X U Y X = U Y