Step |
Hyp |
Ref |
Expression |
1 |
|
pclfin.a |
|
2 |
|
pclfin.c |
|
3 |
|
simpl |
|
4 |
|
elin |
|
5 |
|
elpwi |
|
6 |
5
|
adantl |
|
7 |
4 6
|
sylbi |
|
8 |
|
simpll |
|
9 |
|
sstr |
|
10 |
9
|
ancoms |
|
11 |
10
|
adantll |
|
12 |
|
eqid |
|
13 |
1 12 2
|
pclclN |
|
14 |
8 11 13
|
syl2anc |
|
15 |
1 12
|
psubssat |
|
16 |
8 14 15
|
syl2anc |
|
17 |
16
|
ex |
|
18 |
7 17
|
syl5 |
|
19 |
18
|
ralrimiv |
|
20 |
|
iunss |
|
21 |
19 20
|
sylibr |
|
22 |
|
eliun |
|
23 |
|
fveq2 |
|
24 |
23
|
eleq2d |
|
25 |
24
|
cbvrexvw |
|
26 |
22 25
|
bitri |
|
27 |
|
eliun |
|
28 |
|
fveq2 |
|
29 |
28
|
eleq2d |
|
30 |
29
|
cbvrexvw |
|
31 |
27 30
|
bitri |
|
32 |
26 31
|
anbi12i |
|
33 |
|
elin |
|
34 |
|
elpwi |
|
35 |
34
|
anim2i |
|
36 |
33 35
|
sylbi |
|
37 |
|
elin |
|
38 |
|
elpwi |
|
39 |
38
|
anim2i |
|
40 |
37 39
|
sylbi |
|
41 |
|
simp2rl |
|
42 |
|
simp12l |
|
43 |
|
unfi |
|
44 |
41 42 43
|
syl2anc |
|
45 |
|
simp2rr |
|
46 |
|
simp12r |
|
47 |
45 46
|
unssd |
|
48 |
|
vex |
|
49 |
|
vex |
|
50 |
48 49
|
unex |
|
51 |
50
|
elpw |
|
52 |
47 51
|
sylibr |
|
53 |
44 52
|
elind |
|
54 |
|
simp11l |
|
55 |
|
simp11r |
|
56 |
45 55
|
sstrd |
|
57 |
46 55
|
sstrd |
|
58 |
56 57
|
unssd |
|
59 |
1 12 2
|
pclclN |
|
60 |
54 58 59
|
syl2anc |
|
61 |
|
simp3l |
|
62 |
|
ssun1 |
|
63 |
62
|
a1i |
|
64 |
1 2
|
pclssN |
|
65 |
54 63 58 64
|
syl3anc |
|
66 |
|
simp2l |
|
67 |
65 66
|
sseldd |
|
68 |
|
ssun2 |
|
69 |
68
|
a1i |
|
70 |
1 2
|
pclssN |
|
71 |
54 69 58 70
|
syl3anc |
|
72 |
|
simp13 |
|
73 |
71 72
|
sseldd |
|
74 |
|
simp3r |
|
75 |
|
eqid |
|
76 |
|
eqid |
|
77 |
75 76 1 12
|
psubspi2N |
|
78 |
54 60 61 67 73 74 77
|
syl33anc |
|
79 |
|
fveq2 |
|
80 |
79
|
eleq2d |
|
81 |
80
|
rspcev |
|
82 |
53 78 81
|
syl2anc |
|
83 |
|
eliun |
|
84 |
82 83
|
sylibr |
|
85 |
84
|
3exp |
|
86 |
85
|
exp5c |
|
87 |
86
|
3exp |
|
88 |
40 87
|
syl5 |
|
89 |
88
|
rexlimdv |
|
90 |
89
|
com24 |
|
91 |
36 90
|
syl5 |
|
92 |
91
|
rexlimdv |
|
93 |
92
|
impd |
|
94 |
32 93
|
syl5bi |
|
95 |
94
|
ralrimdv |
|
96 |
95
|
ralrimivv |
|
97 |
75 76 1 12
|
ispsubsp |
|
98 |
97
|
adantr |
|
99 |
21 96 98
|
mpbir2and |
|
100 |
|
snfi |
|
101 |
100
|
a1i |
|
102 |
|
snelpwi |
|
103 |
102
|
adantl |
|
104 |
101 103
|
elind |
|
105 |
|
vsnid |
|
106 |
|
simpll |
|
107 |
|
ssel2 |
|
108 |
107
|
adantll |
|
109 |
1 12
|
snatpsubN |
|
110 |
106 108 109
|
syl2anc |
|
111 |
12 2
|
pclidN |
|
112 |
106 110 111
|
syl2anc |
|
113 |
105 112
|
eleqtrrid |
|
114 |
|
fveq2 |
|
115 |
114
|
eleq2d |
|
116 |
115
|
rspcev |
|
117 |
104 113 116
|
syl2anc |
|
118 |
117
|
ex |
|
119 |
|
eliun |
|
120 |
118 119
|
syl6ibr |
|
121 |
120
|
ssrdv |
|
122 |
|
simpr |
|
123 |
|
simplr |
|
124 |
1 2
|
pclssN |
|
125 |
8 122 123 124
|
syl3anc |
|
126 |
125
|
sseld |
|
127 |
126
|
ex |
|
128 |
7 127
|
syl5 |
|
129 |
128
|
rexlimdv |
|
130 |
119 129
|
syl5bi |
|
131 |
130
|
ssrdv |
|
132 |
12 2
|
pclbtwnN |
|
133 |
3 99 121 131 132
|
syl22anc |
|
134 |
133
|
eqcomd |
|