| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclfincl.a |
|
| 2 |
|
pclfincl.c |
|
| 3 |
|
pclfincl.s |
|
| 4 |
|
sseq1 |
|
| 5 |
4
|
anbi2d |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
5 7
|
imbi12d |
|
| 9 |
|
sseq1 |
|
| 10 |
9
|
anbi2d |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
eleq1d |
|
| 13 |
10 12
|
imbi12d |
|
| 14 |
|
sseq1 |
|
| 15 |
14
|
anbi2d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
eleq1d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
|
sseq1 |
|
| 20 |
19
|
anbi2d |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
20 22
|
imbi12d |
|
| 24 |
2
|
pcl0N |
|
| 25 |
3
|
0psubclN |
|
| 26 |
24 25
|
eqeltrd |
|
| 27 |
26
|
adantr |
|
| 28 |
|
anass |
|
| 29 |
|
vex |
|
| 30 |
29
|
snss |
|
| 31 |
30
|
anbi2i |
|
| 32 |
|
unss |
|
| 33 |
31 32
|
bitri |
|
| 34 |
33
|
anbi2i |
|
| 35 |
28 34
|
bitr2i |
|
| 36 |
|
simpllr |
|
| 37 |
36
|
uneq1d |
|
| 38 |
|
uncom |
|
| 39 |
|
un0 |
|
| 40 |
38 39
|
eqtri |
|
| 41 |
37 40
|
eqtrdi |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
simplrl |
|
| 44 |
|
hlatl |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
simprr |
|
| 47 |
|
eqid |
|
| 48 |
1 47
|
snatpsubN |
|
| 49 |
45 46 48
|
syl2anc |
|
| 50 |
47 2
|
pclidN |
|
| 51 |
43 49 50
|
syl2anc |
|
| 52 |
42 51
|
eqtrd |
|
| 53 |
1 3
|
atpsubclN |
|
| 54 |
43 46 53
|
syl2anc |
|
| 55 |
52 54
|
eqeltrd |
|
| 56 |
55
|
exp43 |
|
| 57 |
|
simplrl |
|
| 58 |
1 2
|
pclssidN |
|
| 59 |
58
|
ad2antlr |
|
| 60 |
|
unss1 |
|
| 61 |
59 60
|
syl |
|
| 62 |
|
simprl |
|
| 63 |
1 3
|
psubclssatN |
|
| 64 |
57 62 63
|
syl2anc |
|
| 65 |
|
snssi |
|
| 66 |
65
|
ad2antll |
|
| 67 |
|
eqid |
|
| 68 |
1 67
|
paddunssN |
|
| 69 |
57 64 66 68
|
syl3anc |
|
| 70 |
61 69
|
sstrd |
|
| 71 |
1 67
|
paddssat |
|
| 72 |
57 64 66 71
|
syl3anc |
|
| 73 |
1 2
|
pclssN |
|
| 74 |
57 70 72 73
|
syl3anc |
|
| 75 |
|
simprr |
|
| 76 |
1 67 3
|
paddatclN |
|
| 77 |
57 62 75 76
|
syl3anc |
|
| 78 |
47 3
|
psubclsubN |
|
| 79 |
57 77 78
|
syl2anc |
|
| 80 |
47 2
|
pclidN |
|
| 81 |
57 79 80
|
syl2anc |
|
| 82 |
74 81
|
sseqtrd |
|
| 83 |
57
|
hllatd |
|
| 84 |
|
simpllr |
|
| 85 |
1 2
|
pcl0bN |
|
| 86 |
85
|
ad2antlr |
|
| 87 |
86
|
necon3bid |
|
| 88 |
84 87
|
mpbird |
|
| 89 |
|
eqid |
|
| 90 |
|
eqid |
|
| 91 |
89 90 1 67
|
elpaddat |
|
| 92 |
83 64 75 88 91
|
syl31anc |
|
| 93 |
|
simp1rl |
|
| 94 |
93
|
3ad2ant1 |
|
| 95 |
94
|
adantr |
|
| 96 |
|
simprl |
|
| 97 |
|
simpl13 |
|
| 98 |
|
unss |
|
| 99 |
|
simpl |
|
| 100 |
98 99
|
sylbir |
|
| 101 |
100
|
ad2antll |
|
| 102 |
|
simpl2 |
|
| 103 |
47 2
|
elpcliN |
|
| 104 |
95 101 96 102 103
|
syl31anc |
|
| 105 |
29
|
snss |
|
| 106 |
105
|
biimpri |
|
| 107 |
106
|
adantl |
|
| 108 |
98 107
|
sylbir |
|
| 109 |
108
|
ad2antll |
|
| 110 |
|
simpl3 |
|
| 111 |
89 90 1 47
|
psubspi2N |
|
| 112 |
95 96 97 104 109 110 111
|
syl33anc |
|
| 113 |
112
|
exp520 |
|
| 114 |
113
|
rexlimdv |
|
| 115 |
114
|
3expia |
|
| 116 |
115
|
impd |
|
| 117 |
92 116
|
sylbid |
|
| 118 |
117
|
ralrimdv |
|
| 119 |
|
simplrr |
|
| 120 |
119 75
|
jca |
|
| 121 |
120 33
|
sylib |
|
| 122 |
|
vex |
|
| 123 |
1 47 2 122
|
elpclN |
|
| 124 |
57 121 123
|
syl2anc |
|
| 125 |
118 124
|
sylibrd |
|
| 126 |
125
|
ssrdv |
|
| 127 |
82 126
|
eqssd |
|
| 128 |
127 77
|
eqeltrd |
|
| 129 |
128
|
exp43 |
|
| 130 |
56 129
|
pm2.61dane |
|
| 131 |
130
|
a2d |
|
| 132 |
131
|
imp4b |
|
| 133 |
35 132
|
biimtrid |
|
| 134 |
133
|
ex |
|
| 135 |
8 13 18 23 27 134
|
findcard2 |
|
| 136 |
135
|
3impib |
|
| 137 |
136
|
3coml |
|