Step |
Hyp |
Ref |
Expression |
1 |
|
pclfincl.a |
|
2 |
|
pclfincl.c |
|
3 |
|
pclfincl.s |
|
4 |
|
sseq1 |
|
5 |
4
|
anbi2d |
|
6 |
|
fveq2 |
|
7 |
6
|
eleq1d |
|
8 |
5 7
|
imbi12d |
|
9 |
|
sseq1 |
|
10 |
9
|
anbi2d |
|
11 |
|
fveq2 |
|
12 |
11
|
eleq1d |
|
13 |
10 12
|
imbi12d |
|
14 |
|
sseq1 |
|
15 |
14
|
anbi2d |
|
16 |
|
fveq2 |
|
17 |
16
|
eleq1d |
|
18 |
15 17
|
imbi12d |
|
19 |
|
sseq1 |
|
20 |
19
|
anbi2d |
|
21 |
|
fveq2 |
|
22 |
21
|
eleq1d |
|
23 |
20 22
|
imbi12d |
|
24 |
2
|
pcl0N |
|
25 |
3
|
0psubclN |
|
26 |
24 25
|
eqeltrd |
|
27 |
26
|
adantr |
|
28 |
|
anass |
|
29 |
|
vex |
|
30 |
29
|
snss |
|
31 |
30
|
anbi2i |
|
32 |
|
unss |
|
33 |
31 32
|
bitri |
|
34 |
33
|
anbi2i |
|
35 |
28 34
|
bitr2i |
|
36 |
|
simpllr |
|
37 |
36
|
uneq1d |
|
38 |
|
uncom |
|
39 |
|
un0 |
|
40 |
38 39
|
eqtri |
|
41 |
37 40
|
eqtrdi |
|
42 |
41
|
fveq2d |
|
43 |
|
simplrl |
|
44 |
|
hlatl |
|
45 |
43 44
|
syl |
|
46 |
|
simprr |
|
47 |
|
eqid |
|
48 |
1 47
|
snatpsubN |
|
49 |
45 46 48
|
syl2anc |
|
50 |
47 2
|
pclidN |
|
51 |
43 49 50
|
syl2anc |
|
52 |
42 51
|
eqtrd |
|
53 |
1 3
|
atpsubclN |
|
54 |
43 46 53
|
syl2anc |
|
55 |
52 54
|
eqeltrd |
|
56 |
55
|
exp43 |
|
57 |
|
simplrl |
|
58 |
1 2
|
pclssidN |
|
59 |
58
|
ad2antlr |
|
60 |
|
unss1 |
|
61 |
59 60
|
syl |
|
62 |
|
simprl |
|
63 |
1 3
|
psubclssatN |
|
64 |
57 62 63
|
syl2anc |
|
65 |
|
snssi |
|
66 |
65
|
ad2antll |
|
67 |
|
eqid |
|
68 |
1 67
|
paddunssN |
|
69 |
57 64 66 68
|
syl3anc |
|
70 |
61 69
|
sstrd |
|
71 |
1 67
|
paddssat |
|
72 |
57 64 66 71
|
syl3anc |
|
73 |
1 2
|
pclssN |
|
74 |
57 70 72 73
|
syl3anc |
|
75 |
|
simprr |
|
76 |
1 67 3
|
paddatclN |
|
77 |
57 62 75 76
|
syl3anc |
|
78 |
47 3
|
psubclsubN |
|
79 |
57 77 78
|
syl2anc |
|
80 |
47 2
|
pclidN |
|
81 |
57 79 80
|
syl2anc |
|
82 |
74 81
|
sseqtrd |
|
83 |
57
|
hllatd |
|
84 |
|
simpllr |
|
85 |
1 2
|
pcl0bN |
|
86 |
85
|
ad2antlr |
|
87 |
86
|
necon3bid |
|
88 |
84 87
|
mpbird |
|
89 |
|
eqid |
|
90 |
|
eqid |
|
91 |
89 90 1 67
|
elpaddat |
|
92 |
83 64 75 88 91
|
syl31anc |
|
93 |
|
simp1rl |
|
94 |
93
|
3ad2ant1 |
|
95 |
94
|
adantr |
|
96 |
|
simprl |
|
97 |
|
simpl13 |
|
98 |
|
unss |
|
99 |
|
simpl |
|
100 |
98 99
|
sylbir |
|
101 |
100
|
ad2antll |
|
102 |
|
simpl2 |
|
103 |
47 2
|
elpcliN |
|
104 |
95 101 96 102 103
|
syl31anc |
|
105 |
29
|
snss |
|
106 |
105
|
biimpri |
|
107 |
106
|
adantl |
|
108 |
98 107
|
sylbir |
|
109 |
108
|
ad2antll |
|
110 |
|
simpl3 |
|
111 |
89 90 1 47
|
psubspi2N |
|
112 |
95 96 97 104 109 110 111
|
syl33anc |
|
113 |
112
|
exp520 |
|
114 |
113
|
rexlimdv |
|
115 |
114
|
3expia |
|
116 |
115
|
impd |
|
117 |
92 116
|
sylbid |
|
118 |
117
|
ralrimdv |
|
119 |
|
simplrr |
|
120 |
119 75
|
jca |
|
121 |
120 33
|
sylib |
|
122 |
|
vex |
|
123 |
1 47 2 122
|
elpclN |
|
124 |
57 121 123
|
syl2anc |
|
125 |
118 124
|
sylibrd |
|
126 |
125
|
ssrdv |
|
127 |
82 126
|
eqssd |
|
128 |
127 77
|
eqeltrd |
|
129 |
128
|
exp43 |
|
130 |
56 129
|
pm2.61dane |
|
131 |
130
|
a2d |
|
132 |
131
|
imp4b |
|
133 |
35 132
|
syl5bi |
|
134 |
133
|
ex |
|
135 |
8 13 18 23 27 134
|
findcard2 |
|
136 |
135
|
3impib |
|
137 |
136
|
3coml |
|