Metamath Proof Explorer


Theorem pclogsum

Description: The logarithmic analogue of pcprod . The sum of the logarithms of the primes dividing A multiplied by their powers yields the logarithm of A . (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Assertion pclogsum A p 1 A p pCnt A log p = log A

Proof

Step Hyp Ref Expression
1 elin p 1 A p 1 A p
2 1 baib p 1 A p 1 A p
3 2 ifbid p 1 A if p 1 A log p p pCnt A 0 = if p log p p pCnt A 0
4 fvif log if p p p pCnt A 1 = if p log p p pCnt A log 1
5 log1 log 1 = 0
6 ifeq2 log 1 = 0 if p log p p pCnt A log 1 = if p log p p pCnt A 0
7 5 6 ax-mp if p log p p pCnt A log 1 = if p log p p pCnt A 0
8 4 7 eqtri log if p p p pCnt A 1 = if p log p p pCnt A 0
9 3 8 eqtr4di p 1 A if p 1 A log p p pCnt A 0 = log if p p p pCnt A 1
10 9 sumeq2i p = 1 A if p 1 A log p p pCnt A 0 = p = 1 A log if p p p pCnt A 1
11 inss1 1 A 1 A
12 simpr A p 1 A p 1 A
13 12 elin1d A p 1 A p 1 A
14 elfznn p 1 A p
15 13 14 syl A p 1 A p
16 12 elin2d A p 1 A p
17 simpl A p 1 A A
18 16 17 pccld A p 1 A p pCnt A 0
19 15 18 nnexpcld A p 1 A p p pCnt A
20 19 nnrpd A p 1 A p p pCnt A +
21 20 relogcld A p 1 A log p p pCnt A
22 21 recnd A p 1 A log p p pCnt A
23 22 ralrimiva A p 1 A log p p pCnt A
24 fzfi 1 A Fin
25 24 olci 1 A 1 1 A Fin
26 sumss2 1 A 1 A p 1 A log p p pCnt A 1 A 1 1 A Fin p 1 A log p p pCnt A = p = 1 A if p 1 A log p p pCnt A 0
27 25 26 mpan2 1 A 1 A p 1 A log p p pCnt A p 1 A log p p pCnt A = p = 1 A if p 1 A log p p pCnt A 0
28 11 23 27 sylancr A p 1 A log p p pCnt A = p = 1 A if p 1 A log p p pCnt A 0
29 15 nnrpd A p 1 A p +
30 18 nn0zd A p 1 A p pCnt A
31 relogexp p + p pCnt A log p p pCnt A = p pCnt A log p
32 29 30 31 syl2anc A p 1 A log p p pCnt A = p pCnt A log p
33 32 sumeq2dv A p 1 A log p p pCnt A = p 1 A p pCnt A log p
34 28 33 eqtr3d A p = 1 A if p 1 A log p p pCnt A 0 = p 1 A p pCnt A log p
35 14 adantl A p 1 A p
36 eleq1w n = p n p
37 id n = p n = p
38 oveq1 n = p n pCnt A = p pCnt A
39 37 38 oveq12d n = p n n pCnt A = p p pCnt A
40 36 39 ifbieq1d n = p if n n n pCnt A 1 = if p p p pCnt A 1
41 40 fveq2d n = p log if n n n pCnt A 1 = log if p p p pCnt A 1
42 eqid n log if n n n pCnt A 1 = n log if n n n pCnt A 1
43 fvex log if p p p pCnt A 1 V
44 41 42 43 fvmpt p n log if n n n pCnt A 1 p = log if p p p pCnt A 1
45 35 44 syl A p 1 A n log if n n n pCnt A 1 p = log if p p p pCnt A 1
46 elnnuz A A 1
47 46 biimpi A A 1
48 35 adantr A p 1 A p p
49 simpr A p 1 A p p
50 simpll A p 1 A p A
51 49 50 pccld A p 1 A p p pCnt A 0
52 48 51 nnexpcld A p 1 A p p p pCnt A
53 1nn 1
54 53 a1i A p 1 A ¬ p 1
55 52 54 ifclda A p 1 A if p p p pCnt A 1
56 55 nnrpd A p 1 A if p p p pCnt A 1 +
57 56 relogcld A p 1 A log if p p p pCnt A 1
58 57 recnd A p 1 A log if p p p pCnt A 1
59 45 47 58 fsumser A p = 1 A log if p p p pCnt A 1 = seq 1 + n log if n n n pCnt A 1 A
60 rpmulcl p + m + p m +
61 60 adantl A p + m + p m +
62 eqid n if n n n pCnt A 1 = n if n n n pCnt A 1
63 ovex p p pCnt A V
64 1ex 1 V
65 63 64 ifex if p p p pCnt A 1 V
66 40 62 65 fvmpt p n if n n n pCnt A 1 p = if p p p pCnt A 1
67 35 66 syl A p 1 A n if n n n pCnt A 1 p = if p p p pCnt A 1
68 67 56 eqeltrd A p 1 A n if n n n pCnt A 1 p +
69 relogmul p + m + log p m = log p + log m
70 69 adantl A p + m + log p m = log p + log m
71 67 fveq2d A p 1 A log n if n n n pCnt A 1 p = log if p p p pCnt A 1
72 71 45 eqtr4d A p 1 A log n if n n n pCnt A 1 p = n log if n n n pCnt A 1 p
73 61 68 47 70 72 seqhomo A log seq 1 × n if n n n pCnt A 1 A = seq 1 + n log if n n n pCnt A 1 A
74 62 pcprod A seq 1 × n if n n n pCnt A 1 A = A
75 74 fveq2d A log seq 1 × n if n n n pCnt A 1 A = log A
76 59 73 75 3eqtr2d A p = 1 A log if p p p pCnt A 1 = log A
77 10 34 76 3eqtr3a A p 1 A p pCnt A log p = log A