Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|
2 |
1
|
baib |
|
3 |
2
|
ifbid |
|
4 |
|
fvif |
|
5 |
|
log1 |
|
6 |
|
ifeq2 |
|
7 |
5 6
|
ax-mp |
|
8 |
4 7
|
eqtri |
|
9 |
3 8
|
eqtr4di |
|
10 |
9
|
sumeq2i |
|
11 |
|
inss1 |
|
12 |
|
simpr |
|
13 |
12
|
elin1d |
|
14 |
|
elfznn |
|
15 |
13 14
|
syl |
|
16 |
12
|
elin2d |
|
17 |
|
simpl |
|
18 |
16 17
|
pccld |
|
19 |
15 18
|
nnexpcld |
|
20 |
19
|
nnrpd |
|
21 |
20
|
relogcld |
|
22 |
21
|
recnd |
|
23 |
22
|
ralrimiva |
|
24 |
|
fzfi |
|
25 |
24
|
olci |
|
26 |
|
sumss2 |
|
27 |
25 26
|
mpan2 |
|
28 |
11 23 27
|
sylancr |
|
29 |
15
|
nnrpd |
|
30 |
18
|
nn0zd |
|
31 |
|
relogexp |
|
32 |
29 30 31
|
syl2anc |
|
33 |
32
|
sumeq2dv |
|
34 |
28 33
|
eqtr3d |
|
35 |
14
|
adantl |
|
36 |
|
eleq1w |
|
37 |
|
id |
|
38 |
|
oveq1 |
|
39 |
37 38
|
oveq12d |
|
40 |
36 39
|
ifbieq1d |
|
41 |
40
|
fveq2d |
|
42 |
|
eqid |
|
43 |
|
fvex |
|
44 |
41 42 43
|
fvmpt |
|
45 |
35 44
|
syl |
|
46 |
|
elnnuz |
|
47 |
46
|
biimpi |
|
48 |
35
|
adantr |
|
49 |
|
simpr |
|
50 |
|
simpll |
|
51 |
49 50
|
pccld |
|
52 |
48 51
|
nnexpcld |
|
53 |
|
1nn |
|
54 |
53
|
a1i |
|
55 |
52 54
|
ifclda |
|
56 |
55
|
nnrpd |
|
57 |
56
|
relogcld |
|
58 |
57
|
recnd |
|
59 |
45 47 58
|
fsumser |
|
60 |
|
rpmulcl |
|
61 |
60
|
adantl |
|
62 |
|
eqid |
|
63 |
|
ovex |
|
64 |
|
1ex |
|
65 |
63 64
|
ifex |
|
66 |
40 62 65
|
fvmpt |
|
67 |
35 66
|
syl |
|
68 |
67 56
|
eqeltrd |
|
69 |
|
relogmul |
|
70 |
69
|
adantl |
|
71 |
67
|
fveq2d |
|
72 |
71 45
|
eqtr4d |
|
73 |
61 68 47 70 72
|
seqhomo |
|
74 |
62
|
pcprod |
|
75 |
74
|
fveq2d |
|
76 |
59 73 75
|
3eqtr2d |
|
77 |
10 34 76
|
3eqtr3a |
|