Metamath Proof Explorer


Theorem pclss2polN

Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclss2pol.a A = Atoms K
pclss2pol.o ˙ = 𝑃 K
pclss2pol.c U = PCl K
Assertion pclss2polN K HL X A U X ˙ ˙ X

Proof

Step Hyp Ref Expression
1 pclss2pol.a A = Atoms K
2 pclss2pol.o ˙ = 𝑃 K
3 pclss2pol.c U = PCl K
4 simpl K HL X A K HL
5 1 2 2polssN K HL X A X ˙ ˙ X
6 1 2 polssatN K HL X A ˙ X A
7 1 2 polssatN K HL ˙ X A ˙ ˙ X A
8 6 7 syldan K HL X A ˙ ˙ X A
9 1 3 pclssN K HL X ˙ ˙ X ˙ ˙ X A U X U ˙ ˙ X
10 4 5 8 9 syl3anc K HL X A U X U ˙ ˙ X
11 eqid PSubSp K = PSubSp K
12 1 11 2 polsubN K HL ˙ X A ˙ ˙ X PSubSp K
13 6 12 syldan K HL X A ˙ ˙ X PSubSp K
14 11 3 pclidN K HL ˙ ˙ X PSubSp K U ˙ ˙ X = ˙ ˙ X
15 13 14 syldan K HL X A U ˙ ˙ X = ˙ ˙ X
16 10 15 sseqtrd K HL X A U X ˙ ˙ X