Metamath Proof Explorer


Theorem pclun2N

Description: The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclun2.s S = PSubSp K
pclun2.p + ˙ = + 𝑃 K
pclun2.c U = PCl K
Assertion pclun2N K HL X S Y S U X Y = X + ˙ Y

Proof

Step Hyp Ref Expression
1 pclun2.s S = PSubSp K
2 pclun2.p + ˙ = + 𝑃 K
3 pclun2.c U = PCl K
4 simp1 K HL X S Y S K HL
5 eqid Atoms K = Atoms K
6 5 1 psubssat K HL X S X Atoms K
7 6 3adant3 K HL X S Y S X Atoms K
8 5 1 psubssat K HL Y S Y Atoms K
9 8 3adant2 K HL X S Y S Y Atoms K
10 5 2 3 pclunN K HL X Atoms K Y Atoms K U X Y = U X + ˙ Y
11 4 7 9 10 syl3anc K HL X S Y S U X Y = U X + ˙ Y
12 1 2 paddclN K HL X S Y S X + ˙ Y S
13 1 3 pclidN K HL X + ˙ Y S U X + ˙ Y = X + ˙ Y
14 4 12 13 syl2anc K HL X S Y S U X + ˙ Y = X + ˙ Y
15 11 14 eqtrd K HL X S Y S U X Y = X + ˙ Y