Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
|
2 |
|
pcmpt.2 |
|
3 |
|
pcmpt.3 |
|
4 |
|
pcmpt.4 |
|
5 |
|
pcmpt.5 |
|
6 |
|
pcmpt2.6 |
|
7 |
1 2
|
pcmptcl |
|
8 |
7
|
simprd |
|
9 |
|
eluznn |
|
10 |
3 6 9
|
syl2anc |
|
11 |
8 10
|
ffvelrnd |
|
12 |
11
|
nnzd |
|
13 |
11
|
nnne0d |
|
14 |
8 3
|
ffvelrnd |
|
15 |
|
pcdiv |
|
16 |
4 12 13 14 15
|
syl121anc |
|
17 |
1 2 10 4 5
|
pcmpt |
|
18 |
1 2 3 4 5
|
pcmpt |
|
19 |
17 18
|
oveq12d |
|
20 |
5
|
eleq1d |
|
21 |
20 2 4
|
rspcdva |
|
22 |
21
|
nn0cnd |
|
23 |
22
|
subidd |
|
24 |
23
|
adantr |
|
25 |
|
prmnn |
|
26 |
4 25
|
syl |
|
27 |
26
|
nnred |
|
28 |
27
|
adantr |
|
29 |
3
|
nnred |
|
30 |
29
|
adantr |
|
31 |
10
|
nnred |
|
32 |
31
|
adantr |
|
33 |
|
simpr |
|
34 |
|
eluzle |
|
35 |
6 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
28 30 32 33 36
|
letrd |
|
38 |
37
|
iftrued |
|
39 |
|
iftrue |
|
40 |
39
|
adantl |
|
41 |
38 40
|
oveq12d |
|
42 |
|
simpr |
|
43 |
42 33
|
nsyl3 |
|
44 |
43
|
iffalsed |
|
45 |
24 41 44
|
3eqtr4d |
|
46 |
|
iffalse |
|
47 |
46
|
oveq2d |
|
48 |
|
0cn |
|
49 |
|
ifcl |
|
50 |
22 48 49
|
sylancl |
|
51 |
50
|
subid1d |
|
52 |
47 51
|
sylan9eqr |
|
53 |
|
simpr |
|
54 |
53
|
biantrud |
|
55 |
54
|
ifbid |
|
56 |
52 55
|
eqtrd |
|
57 |
45 56
|
pm2.61dan |
|
58 |
16 19 57
|
3eqtrd |
|