Metamath Proof Explorer


Theorem pcmptcl

Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses pcmpt.1 F = n if n n A 1
pcmpt.2 φ n A 0
Assertion pcmptcl φ F : seq 1 × F :

Proof

Step Hyp Ref Expression
1 pcmpt.1 F = n if n n A 1
2 pcmpt.2 φ n A 0
3 pm2.27 n n A 0 A 0
4 iftrue n if n n A 1 = n A
5 4 adantr n A 0 if n n A 1 = n A
6 prmnn n n
7 nnexpcl n A 0 n A
8 6 7 sylan n A 0 n A
9 5 8 eqeltrd n A 0 if n n A 1
10 9 ex n A 0 if n n A 1
11 3 10 syld n n A 0 if n n A 1
12 iffalse ¬ n if n n A 1 = 1
13 1nn 1
14 12 13 eqeltrdi ¬ n if n n A 1
15 14 a1d ¬ n n A 0 if n n A 1
16 11 15 pm2.61i n A 0 if n n A 1
17 16 a1d n A 0 n if n n A 1
18 17 ralimi2 n A 0 n if n n A 1
19 2 18 syl φ n if n n A 1
20 1 fmpt n if n n A 1 F :
21 19 20 sylib φ F :
22 nnuz = 1
23 1zzd φ 1
24 21 ffvelrnda φ k F k
25 nnmulcl k p k p
26 25 adantl φ k p k p
27 22 23 24 26 seqf φ seq 1 × F :
28 21 27 jca φ F : seq 1 × F :