Metamath Proof Explorer


Theorem pcmul

Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcmul P A A 0 B B 0 P pCnt A B = P pCnt A + P pCnt B

Proof

Step Hyp Ref Expression
1 eqid sup n 0 | P n A < = sup n 0 | P n A <
2 eqid sup n 0 | P n B < = sup n 0 | P n B <
3 eqid sup n 0 | P n A B < = sup n 0 | P n A B <
4 1 2 3 pcpremul P A A 0 B B 0 sup n 0 | P n A < + sup n 0 | P n B < = sup n 0 | P n A B <
5 1 pczpre P A A 0 P pCnt A = sup n 0 | P n A <
6 5 3adant3 P A A 0 B B 0 P pCnt A = sup n 0 | P n A <
7 2 pczpre P B B 0 P pCnt B = sup n 0 | P n B <
8 7 3adant2 P A A 0 B B 0 P pCnt B = sup n 0 | P n B <
9 6 8 oveq12d P A A 0 B B 0 P pCnt A + P pCnt B = sup n 0 | P n A < + sup n 0 | P n B <
10 zmulcl A B A B
11 10 ad2ant2r A A 0 B B 0 A B
12 zcn A A
13 12 anim1i A A 0 A A 0
14 zcn B B
15 14 anim1i B B 0 B B 0
16 mulne0 A A 0 B B 0 A B 0
17 13 15 16 syl2an A A 0 B B 0 A B 0
18 11 17 jca A A 0 B B 0 A B A B 0
19 3 pczpre P A B A B 0 P pCnt A B = sup n 0 | P n A B <
20 18 19 sylan2 P A A 0 B B 0 P pCnt A B = sup n 0 | P n A B <
21 20 3impb P A A 0 B B 0 P pCnt A B = sup n 0 | P n A B <
22 4 9 21 3eqtr4rd P A A 0 B B 0 P pCnt A B = P pCnt A + P pCnt B