Metamath Proof Explorer


Theorem pcndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds P N ¬ P P pCnt N + 1 N

Proof

Step Hyp Ref Expression
1 nnz N N
2 nnne0 N N 0
3 1 2 jca N N N 0
4 pczndvds P N N 0 ¬ P P pCnt N + 1 N
5 3 4 sylan2 P N ¬ P P pCnt N + 1 N