| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
|
| 2 |
|
zcn |
|
| 3 |
2
|
ad2antrl |
|
| 4 |
|
nncn |
|
| 5 |
4
|
ad2antll |
|
| 6 |
|
nnne0 |
|
| 7 |
6
|
ad2antll |
|
| 8 |
3 5 7
|
divnegd |
|
| 9 |
8
|
oveq2d |
|
| 10 |
|
neg0 |
|
| 11 |
|
simpr |
|
| 12 |
11
|
negeqd |
|
| 13 |
10 12 11
|
3eqtr4a |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
simpll |
|
| 17 |
|
simplrl |
|
| 18 |
17
|
znegcld |
|
| 19 |
|
simpr |
|
| 20 |
2
|
negne0bd |
|
| 21 |
17 20
|
syl |
|
| 22 |
19 21
|
mpbid |
|
| 23 |
|
simplrr |
|
| 24 |
|
pcdiv |
|
| 25 |
16 18 22 23 24
|
syl121anc |
|
| 26 |
|
pcdiv |
|
| 27 |
16 17 19 23 26
|
syl121anc |
|
| 28 |
|
eqid |
|
| 29 |
28
|
pczpre |
|
| 30 |
16 18 22 29
|
syl12anc |
|
| 31 |
|
eqid |
|
| 32 |
31
|
pczpre |
|
| 33 |
|
prmz |
|
| 34 |
|
zexpcl |
|
| 35 |
33 34
|
sylan |
|
| 36 |
|
simpl |
|
| 37 |
|
dvdsnegb |
|
| 38 |
35 36 37
|
syl2an |
|
| 39 |
38
|
an32s |
|
| 40 |
39
|
rabbidva |
|
| 41 |
40
|
supeq1d |
|
| 42 |
32 41
|
eqtrd |
|
| 43 |
16 17 19 42
|
syl12anc |
|
| 44 |
30 43
|
eqtr4d |
|
| 45 |
44
|
oveq1d |
|
| 46 |
27 45
|
eqtr4d |
|
| 47 |
25 46
|
eqtr4d |
|
| 48 |
15 47
|
pm2.61dane |
|
| 49 |
9 48
|
eqtrd |
|
| 50 |
|
negeq |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
oveq2 |
|
| 53 |
51 52
|
eqeq12d |
|
| 54 |
49 53
|
syl5ibrcom |
|
| 55 |
54
|
rexlimdvva |
|
| 56 |
1 55
|
biimtrid |
|
| 57 |
56
|
imp |
|