Metamath Proof Explorer


Theorem pcpre1

Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses pclem.1 A = n 0 | P n N
pclem.2 S = sup A <
Assertion pcpre1 P 2 N = 1 S = 0

Proof

Step Hyp Ref Expression
1 pclem.1 A = n 0 | P n N
2 pclem.2 S = sup A <
3 1z 1
4 eleq1 N = 1 N 1
5 3 4 mpbiri N = 1 N
6 ax-1ne0 1 0
7 neeq1 N = 1 N 0 1 0
8 6 7 mpbiri N = 1 N 0
9 5 8 jca N = 1 N N 0
10 1 2 pcprecl P 2 N N 0 S 0 P S N
11 9 10 sylan2 P 2 N = 1 S 0 P S N
12 11 simprd P 2 N = 1 P S N
13 simpr P 2 N = 1 N = 1
14 12 13 breqtrd P 2 N = 1 P S 1
15 eluz2nn P 2 P
16 15 adantr P 2 N = 1 P
17 11 simpld P 2 N = 1 S 0
18 16 17 nnexpcld P 2 N = 1 P S
19 18 nnzd P 2 N = 1 P S
20 1nn 1
21 dvdsle P S 1 P S 1 P S 1
22 19 20 21 sylancl P 2 N = 1 P S 1 P S 1
23 14 22 mpd P 2 N = 1 P S 1
24 16 nncnd P 2 N = 1 P
25 24 exp0d P 2 N = 1 P 0 = 1
26 23 25 breqtrrd P 2 N = 1 P S P 0
27 16 nnred P 2 N = 1 P
28 17 nn0zd P 2 N = 1 S
29 0zd P 2 N = 1 0
30 eluz2gt1 P 2 1 < P
31 30 adantr P 2 N = 1 1 < P
32 27 28 29 31 leexp2d P 2 N = 1 S 0 P S P 0
33 26 32 mpbird P 2 N = 1 S 0
34 10 simpld P 2 N N 0 S 0
35 9 34 sylan2 P 2 N = 1 S 0
36 nn0le0eq0 S 0 S 0 S = 0
37 35 36 syl P 2 N = 1 S 0 S = 0
38 33 37 mpbid P 2 N = 1 S = 0