Metamath Proof Explorer


Theorem pcprecl

Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A = n 0 | P n N
pclem.2 S = sup A <
Assertion pcprecl P 2 N N 0 S 0 P S N

Proof

Step Hyp Ref Expression
1 pclem.1 A = n 0 | P n N
2 pclem.2 S = sup A <
3 1 pclem P 2 N N 0 A A y z A z y
4 suprzcl2 A A y z A z y sup A < A
5 3 4 syl P 2 N N 0 sup A < A
6 2 5 eqeltrid P 2 N N 0 S A
7 oveq2 x = S P x = P S
8 7 breq1d x = S P x N P S N
9 oveq2 n = x P n = P x
10 9 breq1d n = x P n N P x N
11 10 cbvrabv n 0 | P n N = x 0 | P x N
12 1 11 eqtri A = x 0 | P x N
13 8 12 elrab2 S A S 0 P S N
14 6 13 sylib P 2 N N 0 S 0 P S N