Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
The prime count function
pcprecl
Next ⟩
pcprendvds
Metamath Proof Explorer
Ascii
Unicode
Theorem
pcprecl
Description:
Closure of the prime power pre-function.
(Contributed by
Mario Carneiro
, 23-Feb-2014)
Ref
Expression
Hypotheses
pclem.1
⊢
A
=
n
∈
ℕ
0
|
P
n
∥
N
pclem.2
⊢
S
=
sup
A
ℝ
<
Assertion
pcprecl
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
S
∈
ℕ
0
∧
P
S
∥
N
Proof
Step
Hyp
Ref
Expression
1
pclem.1
⊢
A
=
n
∈
ℕ
0
|
P
n
∥
N
2
pclem.2
⊢
S
=
sup
A
ℝ
<
3
1
pclem
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
A
⊆
ℤ
∧
A
≠
∅
∧
∃
y
∈
ℤ
∀
z
∈
A
z
≤
y
4
suprzcl2
⊢
A
⊆
ℤ
∧
A
≠
∅
∧
∃
y
∈
ℤ
∀
z
∈
A
z
≤
y
→
sup
A
ℝ
<
∈
A
5
3
4
syl
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
sup
A
ℝ
<
∈
A
6
2
5
eqeltrid
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
S
∈
A
7
oveq2
⊢
x
=
S
→
P
x
=
P
S
8
7
breq1d
⊢
x
=
S
→
P
x
∥
N
↔
P
S
∥
N
9
oveq2
⊢
n
=
x
→
P
n
=
P
x
10
9
breq1d
⊢
n
=
x
→
P
n
∥
N
↔
P
x
∥
N
11
10
cbvrabv
⊢
n
∈
ℕ
0
|
P
n
∥
N
=
x
∈
ℕ
0
|
P
x
∥
N
12
1
11
eqtri
⊢
A
=
x
∈
ℕ
0
|
P
x
∥
N
13
8
12
elrab2
⊢
S
∈
A
↔
S
∈
ℕ
0
∧
P
S
∥
N
14
6
13
sylib
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
S
∈
ℕ
0
∧
P
S
∥
N