Step |
Hyp |
Ref |
Expression |
1 |
|
pcpremul.1 |
|
2 |
|
pcpremul.2 |
|
3 |
|
pcpremul.3 |
|
4 |
|
prmuz2 |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
zmulcl |
|
7 |
6
|
ad2ant2r |
|
8 |
7
|
3adant1 |
|
9 |
|
zcn |
|
10 |
9
|
anim1i |
|
11 |
|
zcn |
|
12 |
11
|
anim1i |
|
13 |
|
mulne0 |
|
14 |
10 12 13
|
syl2an |
|
15 |
14
|
3adant1 |
|
16 |
|
eqid |
|
17 |
16
|
pclem |
|
18 |
5 8 15 17
|
syl12anc |
|
19 |
18
|
simp1d |
|
20 |
18
|
simp3d |
|
21 |
|
oveq2 |
|
22 |
21
|
breq1d |
|
23 |
|
simp2l |
|
24 |
|
simp2r |
|
25 |
|
eqid |
|
26 |
25 1
|
pcprecl |
|
27 |
5 23 24 26
|
syl12anc |
|
28 |
27
|
simpld |
|
29 |
|
simp3l |
|
30 |
|
simp3r |
|
31 |
|
eqid |
|
32 |
31 2
|
pcprecl |
|
33 |
5 29 30 32
|
syl12anc |
|
34 |
33
|
simpld |
|
35 |
28 34
|
nn0addcld |
|
36 |
|
prmnn |
|
37 |
36
|
3ad2ant1 |
|
38 |
37 35
|
nnexpcld |
|
39 |
38
|
nnzd |
|
40 |
37 34
|
nnexpcld |
|
41 |
40
|
nnzd |
|
42 |
23 41
|
zmulcld |
|
43 |
37
|
nncnd |
|
44 |
43 34 28
|
expaddd |
|
45 |
27
|
simprd |
|
46 |
37 28
|
nnexpcld |
|
47 |
46
|
nnzd |
|
48 |
|
dvdsmulc |
|
49 |
47 23 41 48
|
syl3anc |
|
50 |
45 49
|
mpd |
|
51 |
44 50
|
eqbrtrd |
|
52 |
33
|
simprd |
|
53 |
|
dvdscmul |
|
54 |
41 29 23 53
|
syl3anc |
|
55 |
52 54
|
mpd |
|
56 |
39 42 8 51 55
|
dvdstrd |
|
57 |
22 35 56
|
elrabd |
|
58 |
|
oveq2 |
|
59 |
58
|
breq1d |
|
60 |
59
|
cbvrabv |
|
61 |
57 60
|
eleqtrdi |
|
62 |
|
suprzub |
|
63 |
19 20 61 62
|
syl3anc |
|
64 |
63 3
|
breqtrrdi |
|
65 |
25 1
|
pcprendvds2 |
|
66 |
5 23 24 65
|
syl12anc |
|
67 |
31 2
|
pcprendvds2 |
|
68 |
5 29 30 67
|
syl12anc |
|
69 |
|
ioran |
|
70 |
66 68 69
|
sylanbrc |
|
71 |
|
simp1 |
|
72 |
46
|
nnne0d |
|
73 |
|
dvdsval2 |
|
74 |
47 72 23 73
|
syl3anc |
|
75 |
45 74
|
mpbid |
|
76 |
40
|
nnne0d |
|
77 |
|
dvdsval2 |
|
78 |
41 76 29 77
|
syl3anc |
|
79 |
52 78
|
mpbid |
|
80 |
|
euclemma |
|
81 |
71 75 79 80
|
syl3anc |
|
82 |
70 81
|
mtbird |
|
83 |
16 3
|
pcprecl |
|
84 |
5 8 15 83
|
syl12anc |
|
85 |
84
|
simpld |
|
86 |
|
nn0ltp1le |
|
87 |
35 85 86
|
syl2anc |
|
88 |
37
|
nnzd |
|
89 |
|
peano2nn0 |
|
90 |
35 89
|
syl |
|
91 |
|
dvdsexp |
|
92 |
91
|
3expia |
|
93 |
88 90 92
|
syl2anc |
|
94 |
84
|
simprd |
|
95 |
37 90
|
nnexpcld |
|
96 |
95
|
nnzd |
|
97 |
37 85
|
nnexpcld |
|
98 |
97
|
nnzd |
|
99 |
|
dvdstr |
|
100 |
96 98 8 99
|
syl3anc |
|
101 |
94 100
|
mpan2d |
|
102 |
93 101
|
syld |
|
103 |
90
|
nn0zd |
|
104 |
85
|
nn0zd |
|
105 |
|
eluz |
|
106 |
103 104 105
|
syl2anc |
|
107 |
43 35
|
expp1d |
|
108 |
23
|
zcnd |
|
109 |
29
|
zcnd |
|
110 |
108 109
|
mulcld |
|
111 |
38
|
nncnd |
|
112 |
38
|
nnne0d |
|
113 |
110 111 112
|
divcan2d |
|
114 |
44
|
oveq2d |
|
115 |
46
|
nncnd |
|
116 |
40
|
nncnd |
|
117 |
108 115 109 116 72 76
|
divmuldivd |
|
118 |
114 117
|
eqtr4d |
|
119 |
118
|
oveq2d |
|
120 |
113 119
|
eqtr3d |
|
121 |
107 120
|
breq12d |
|
122 |
75 79
|
zmulcld |
|
123 |
|
dvdscmulr |
|
124 |
88 122 39 112 123
|
syl112anc |
|
125 |
121 124
|
bitrd |
|
126 |
102 106 125
|
3imtr3d |
|
127 |
87 126
|
sylbid |
|
128 |
82 127
|
mtod |
|
129 |
35
|
nn0red |
|
130 |
85
|
nn0red |
|
131 |
129 130
|
eqleltd |
|
132 |
64 128 131
|
mpbir2and |
|