| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcpremul.1 |
|
| 2 |
|
pcpremul.2 |
|
| 3 |
|
pcpremul.3 |
|
| 4 |
|
prmuz2 |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
|
zmulcl |
|
| 7 |
6
|
ad2ant2r |
|
| 8 |
7
|
3adant1 |
|
| 9 |
|
zcn |
|
| 10 |
9
|
anim1i |
|
| 11 |
|
zcn |
|
| 12 |
11
|
anim1i |
|
| 13 |
|
mulne0 |
|
| 14 |
10 12 13
|
syl2an |
|
| 15 |
14
|
3adant1 |
|
| 16 |
|
eqid |
|
| 17 |
16
|
pclem |
|
| 18 |
5 8 15 17
|
syl12anc |
|
| 19 |
18
|
simp1d |
|
| 20 |
18
|
simp3d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
breq1d |
|
| 23 |
|
simp2l |
|
| 24 |
|
simp2r |
|
| 25 |
|
eqid |
|
| 26 |
25 1
|
pcprecl |
|
| 27 |
5 23 24 26
|
syl12anc |
|
| 28 |
27
|
simpld |
|
| 29 |
|
simp3l |
|
| 30 |
|
simp3r |
|
| 31 |
|
eqid |
|
| 32 |
31 2
|
pcprecl |
|
| 33 |
5 29 30 32
|
syl12anc |
|
| 34 |
33
|
simpld |
|
| 35 |
28 34
|
nn0addcld |
|
| 36 |
|
prmnn |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37 35
|
nnexpcld |
|
| 39 |
38
|
nnzd |
|
| 40 |
37 34
|
nnexpcld |
|
| 41 |
40
|
nnzd |
|
| 42 |
23 41
|
zmulcld |
|
| 43 |
37
|
nncnd |
|
| 44 |
43 34 28
|
expaddd |
|
| 45 |
27
|
simprd |
|
| 46 |
37 28
|
nnexpcld |
|
| 47 |
46
|
nnzd |
|
| 48 |
|
dvdsmulc |
|
| 49 |
47 23 41 48
|
syl3anc |
|
| 50 |
45 49
|
mpd |
|
| 51 |
44 50
|
eqbrtrd |
|
| 52 |
33
|
simprd |
|
| 53 |
|
dvdscmul |
|
| 54 |
41 29 23 53
|
syl3anc |
|
| 55 |
52 54
|
mpd |
|
| 56 |
39 42 8 51 55
|
dvdstrd |
|
| 57 |
22 35 56
|
elrabd |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
breq1d |
|
| 60 |
59
|
cbvrabv |
|
| 61 |
57 60
|
eleqtrdi |
|
| 62 |
|
suprzub |
|
| 63 |
19 20 61 62
|
syl3anc |
|
| 64 |
63 3
|
breqtrrdi |
|
| 65 |
25 1
|
pcprendvds2 |
|
| 66 |
5 23 24 65
|
syl12anc |
|
| 67 |
31 2
|
pcprendvds2 |
|
| 68 |
5 29 30 67
|
syl12anc |
|
| 69 |
|
ioran |
|
| 70 |
66 68 69
|
sylanbrc |
|
| 71 |
|
simp1 |
|
| 72 |
46
|
nnne0d |
|
| 73 |
|
dvdsval2 |
|
| 74 |
47 72 23 73
|
syl3anc |
|
| 75 |
45 74
|
mpbid |
|
| 76 |
40
|
nnne0d |
|
| 77 |
|
dvdsval2 |
|
| 78 |
41 76 29 77
|
syl3anc |
|
| 79 |
52 78
|
mpbid |
|
| 80 |
|
euclemma |
|
| 81 |
71 75 79 80
|
syl3anc |
|
| 82 |
70 81
|
mtbird |
|
| 83 |
16 3
|
pcprecl |
|
| 84 |
5 8 15 83
|
syl12anc |
|
| 85 |
84
|
simpld |
|
| 86 |
|
nn0ltp1le |
|
| 87 |
35 85 86
|
syl2anc |
|
| 88 |
37
|
nnzd |
|
| 89 |
|
peano2nn0 |
|
| 90 |
35 89
|
syl |
|
| 91 |
|
dvdsexp |
|
| 92 |
91
|
3expia |
|
| 93 |
88 90 92
|
syl2anc |
|
| 94 |
84
|
simprd |
|
| 95 |
37 90
|
nnexpcld |
|
| 96 |
95
|
nnzd |
|
| 97 |
37 85
|
nnexpcld |
|
| 98 |
97
|
nnzd |
|
| 99 |
|
dvdstr |
|
| 100 |
96 98 8 99
|
syl3anc |
|
| 101 |
94 100
|
mpan2d |
|
| 102 |
93 101
|
syld |
|
| 103 |
90
|
nn0zd |
|
| 104 |
85
|
nn0zd |
|
| 105 |
|
eluz |
|
| 106 |
103 104 105
|
syl2anc |
|
| 107 |
43 35
|
expp1d |
|
| 108 |
23
|
zcnd |
|
| 109 |
29
|
zcnd |
|
| 110 |
108 109
|
mulcld |
|
| 111 |
38
|
nncnd |
|
| 112 |
38
|
nnne0d |
|
| 113 |
110 111 112
|
divcan2d |
|
| 114 |
44
|
oveq2d |
|
| 115 |
46
|
nncnd |
|
| 116 |
40
|
nncnd |
|
| 117 |
108 115 109 116 72 76
|
divmuldivd |
|
| 118 |
114 117
|
eqtr4d |
|
| 119 |
118
|
oveq2d |
|
| 120 |
113 119
|
eqtr3d |
|
| 121 |
107 120
|
breq12d |
|
| 122 |
75 79
|
zmulcld |
|
| 123 |
|
dvdscmulr |
|
| 124 |
88 122 39 112 123
|
syl112anc |
|
| 125 |
121 124
|
bitrd |
|
| 126 |
102 106 125
|
3imtr3d |
|
| 127 |
87 126
|
sylbid |
|
| 128 |
82 127
|
mtod |
|
| 129 |
35
|
nn0red |
|
| 130 |
85
|
nn0red |
|
| 131 |
129 130
|
eqleltd |
|
| 132 |
64 128 131
|
mpbir2and |
|