Metamath Proof Explorer


Theorem pcprendvds

Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A = n 0 | P n N
pclem.2 S = sup A <
Assertion pcprendvds P 2 N N 0 ¬ P S + 1 N

Proof

Step Hyp Ref Expression
1 pclem.1 A = n 0 | P n N
2 pclem.2 S = sup A <
3 1 2 pcprecl P 2 N N 0 S 0 P S N
4 3 simpld P 2 N N 0 S 0
5 nn0re S 0 S
6 ltp1 S S < S + 1
7 peano2re S S + 1
8 ltnle S S + 1 S < S + 1 ¬ S + 1 S
9 7 8 mpdan S S < S + 1 ¬ S + 1 S
10 6 9 mpbid S ¬ S + 1 S
11 4 5 10 3syl P 2 N N 0 ¬ S + 1 S
12 1 pclem P 2 N N 0 A A x y A y x
13 peano2nn0 S 0 S + 1 0
14 oveq2 x = S + 1 P x = P S + 1
15 14 breq1d x = S + 1 P x N P S + 1 N
16 oveq2 n = x P n = P x
17 16 breq1d n = x P n N P x N
18 17 cbvrabv n 0 | P n N = x 0 | P x N
19 1 18 eqtri A = x 0 | P x N
20 15 19 elrab2 S + 1 A S + 1 0 P S + 1 N
21 20 simplbi2 S + 1 0 P S + 1 N S + 1 A
22 4 13 21 3syl P 2 N N 0 P S + 1 N S + 1 A
23 suprzub A x y A y x S + 1 A S + 1 sup A <
24 23 2 breqtrrdi A x y A y x S + 1 A S + 1 S
25 24 3expia A x y A y x S + 1 A S + 1 S
26 25 3adant2 A A x y A y x S + 1 A S + 1 S
27 12 22 26 sylsyld P 2 N N 0 P S + 1 N S + 1 S
28 11 27 mtod P 2 N N 0 ¬ P S + 1 N