Metamath Proof Explorer


Theorem pcprendvds2

Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A=n0|PnN
pclem.2 S=supA<
Assertion pcprendvds2 P2NN0¬PNPS

Proof

Step Hyp Ref Expression
1 pclem.1 A=n0|PnN
2 pclem.2 S=supA<
3 1 2 pcprendvds P2NN0¬PS+1N
4 eluz2nn P2P
5 4 adantr P2NN0P
6 5 nnzd P2NN0P
7 1 2 pcprecl P2NN0S0PSN
8 7 simprd P2NN0PSN
9 7 simpld P2NN0S0
10 5 9 nnexpcld P2NN0PS
11 10 nnzd P2NN0PS
12 10 nnne0d P2NN0PS0
13 simprl P2NN0N
14 dvdsval2 PSPS0NPSNNPS
15 11 12 13 14 syl3anc P2NN0PSNNPS
16 8 15 mpbid P2NN0NPS
17 dvdscmul PNPSPSPNPSPSPPSNPS
18 6 16 11 17 syl3anc P2NN0PNPSPSPPSNPS
19 5 nncnd P2NN0P
20 19 9 expp1d P2NN0PS+1=PSP
21 20 eqcomd P2NN0PSP=PS+1
22 zcn NN
23 22 ad2antrl P2NN0N
24 10 nncnd P2NN0PS
25 23 24 12 divcan2d P2NN0PSNPS=N
26 21 25 breq12d P2NN0PSPPSNPSPS+1N
27 18 26 sylibd P2NN0PNPSPS+1N
28 3 27 mtod P2NN0¬PNPS