Metamath Proof Explorer


Theorem pcprendvds2

Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A = n 0 | P n N
pclem.2 S = sup A <
Assertion pcprendvds2 P 2 N N 0 ¬ P N P S

Proof

Step Hyp Ref Expression
1 pclem.1 A = n 0 | P n N
2 pclem.2 S = sup A <
3 1 2 pcprendvds P 2 N N 0 ¬ P S + 1 N
4 eluz2nn P 2 P
5 4 adantr P 2 N N 0 P
6 5 nnzd P 2 N N 0 P
7 1 2 pcprecl P 2 N N 0 S 0 P S N
8 7 simprd P 2 N N 0 P S N
9 7 simpld P 2 N N 0 S 0
10 5 9 nnexpcld P 2 N N 0 P S
11 10 nnzd P 2 N N 0 P S
12 10 nnne0d P 2 N N 0 P S 0
13 simprl P 2 N N 0 N
14 dvdsval2 P S P S 0 N P S N N P S
15 11 12 13 14 syl3anc P 2 N N 0 P S N N P S
16 8 15 mpbid P 2 N N 0 N P S
17 dvdscmul P N P S P S P N P S P S P P S N P S
18 6 16 11 17 syl3anc P 2 N N 0 P N P S P S P P S N P S
19 5 nncnd P 2 N N 0 P
20 19 9 expp1d P 2 N N 0 P S + 1 = P S P
21 20 eqcomd P 2 N N 0 P S P = P S + 1
22 zcn N N
23 22 ad2antrl P 2 N N 0 N
24 10 nncnd P 2 N N 0 P S
25 23 24 12 divcan2d P 2 N N 0 P S N P S = N
26 21 25 breq12d P 2 N N 0 P S P P S N P S P S + 1 N
27 18 26 sylibd P 2 N N 0 P N P S P S + 1 N
28 3 27 mtod P 2 N N 0 ¬ P N P S