Metamath Proof Explorer


Theorem pcprmpw

Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion pcprmpw P A n 0 A = P n A = P P pCnt A

Proof

Step Hyp Ref Expression
1 prmz P P
2 1 adantr P A P
3 zexpcl P n 0 P n
4 2 3 sylan P A n 0 P n
5 iddvds P n P n P n
6 4 5 syl P A n 0 P n P n
7 breq1 A = P n A P n P n P n
8 6 7 syl5ibrcom P A n 0 A = P n A P n
9 8 reximdva P A n 0 A = P n n 0 A P n
10 pcprmpw2 P A n 0 A P n A = P P pCnt A
11 9 10 sylibd P A n 0 A = P n A = P P pCnt A
12 pccl P A P pCnt A 0
13 oveq2 n = P pCnt A P n = P P pCnt A
14 13 rspceeqv P pCnt A 0 A = P P pCnt A n 0 A = P n
15 14 ex P pCnt A 0 A = P P pCnt A n 0 A = P n
16 12 15 syl P A A = P P pCnt A n 0 A = P n
17 11 16 impbid P A n 0 A = P n A = P P pCnt A