Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|
2 |
|
elq |
|
3 |
1 2
|
sylib |
|
4 |
|
nncn |
|
5 |
|
nnne0 |
|
6 |
4 5
|
div0d |
|
7 |
6
|
ad2antll |
|
8 |
|
oveq1 |
|
9 |
8
|
eqeq1d |
|
10 |
7 9
|
syl5ibrcom |
|
11 |
10
|
necon3d |
|
12 |
|
an32 |
|
13 |
|
pcdiv |
|
14 |
|
pczcl |
|
15 |
14
|
nn0zd |
|
16 |
15
|
3adant3 |
|
17 |
|
nnz |
|
18 |
17 5
|
jca |
|
19 |
|
pczcl |
|
20 |
19
|
nn0zd |
|
21 |
18 20
|
sylan2 |
|
22 |
21
|
3adant2 |
|
23 |
16 22
|
zsubcld |
|
24 |
13 23
|
eqeltrd |
|
25 |
24
|
3expb |
|
26 |
12 25
|
sylan2b |
|
27 |
26
|
expr |
|
28 |
11 27
|
syld |
|
29 |
|
neeq1 |
|
30 |
|
oveq2 |
|
31 |
30
|
eleq1d |
|
32 |
29 31
|
imbi12d |
|
33 |
28 32
|
syl5ibrcom |
|
34 |
33
|
com23 |
|
35 |
34
|
impancom |
|
36 |
35
|
adantrl |
|
37 |
36
|
rexlimdvv |
|
38 |
3 37
|
mpd |
|