Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
The prime count function
pcrec
Next ⟩
pcexp
Metamath Proof Explorer
Ascii
Unicode
Theorem
pcrec
Description:
Prime power of a reciprocal.
(Contributed by
Mario Carneiro
, 10-Aug-2015)
Ref
Expression
Assertion
pcrec
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
A
=
−
P
pCnt
A
Proof
Step
Hyp
Ref
Expression
1
1z
⊢
1
∈
ℤ
2
zq
⊢
1
∈
ℤ
→
1
∈
ℚ
3
1
2
ax-mp
⊢
1
∈
ℚ
4
ax-1ne0
⊢
1
≠
0
5
3
4
pm3.2i
⊢
1
∈
ℚ
∧
1
≠
0
6
pcqdiv
⊢
P
∈
ℙ
∧
1
∈
ℚ
∧
1
≠
0
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
A
=
P
pCnt
1
−
P
pCnt
A
7
5
6
mp3an2
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
A
=
P
pCnt
1
−
P
pCnt
A
8
pc1
⊢
P
∈
ℙ
→
P
pCnt
1
=
0
9
8
adantr
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
=
0
10
9
oveq1d
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
−
P
pCnt
A
=
0
−
P
pCnt
A
11
7
10
eqtrd
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
A
=
0
−
P
pCnt
A
12
df-neg
⊢
−
P
pCnt
A
=
0
−
P
pCnt
A
13
11
12
eqtr4di
⊢
P
∈
ℙ
∧
A
∈
ℚ
∧
A
≠
0
→
P
pCnt
1
A
=
−
P
pCnt
A