Metamath Proof Explorer


Theorem pcval

Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)

Ref Expression
Hypotheses pcval.1 S = sup n 0 | P n x <
pcval.2 T = sup n 0 | P n y <
Assertion pcval P N N 0 P pCnt N = ι z | x y N = x y z = S T

Proof

Step Hyp Ref Expression
1 pcval.1 S = sup n 0 | P n x <
2 pcval.2 T = sup n 0 | P n y <
3 simpr p = P r = N r = N
4 3 eqeq1d p = P r = N r = 0 N = 0
5 eqeq1 r = N r = x y N = x y
6 oveq1 p = P p n = P n
7 6 breq1d p = P p n x P n x
8 7 rabbidv p = P n 0 | p n x = n 0 | P n x
9 8 supeq1d p = P sup n 0 | p n x < = sup n 0 | P n x <
10 9 1 eqtr4di p = P sup n 0 | p n x < = S
11 6 breq1d p = P p n y P n y
12 11 rabbidv p = P n 0 | p n y = n 0 | P n y
13 12 supeq1d p = P sup n 0 | p n y < = sup n 0 | P n y <
14 13 2 eqtr4di p = P sup n 0 | p n y < = T
15 10 14 oveq12d p = P sup n 0 | p n x < sup n 0 | p n y < = S T
16 15 eqeq2d p = P z = sup n 0 | p n x < sup n 0 | p n y < z = S T
17 5 16 bi2anan9r p = P r = N r = x y z = sup n 0 | p n x < sup n 0 | p n y < N = x y z = S T
18 17 2rexbidv p = P r = N x y r = x y z = sup n 0 | p n x < sup n 0 | p n y < x y N = x y z = S T
19 18 iotabidv p = P r = N ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y < = ι z | x y N = x y z = S T
20 4 19 ifbieq2d p = P r = N if r = 0 +∞ ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y < = if N = 0 +∞ ι z | x y N = x y z = S T
21 df-pc pCnt = p , r if r = 0 +∞ ι z | x y r = x y z = sup n 0 | p n x < sup n 0 | p n y <
22 pnfex +∞ V
23 iotaex ι z | x y N = x y z = S T V
24 22 23 ifex if N = 0 +∞ ι z | x y N = x y z = S T V
25 20 21 24 ovmpoa P N P pCnt N = if N = 0 +∞ ι z | x y N = x y z = S T
26 ifnefalse N 0 if N = 0 +∞ ι z | x y N = x y z = S T = ι z | x y N = x y z = S T
27 25 26 sylan9eq P N N 0 P pCnt N = ι z | x y N = x y z = S T
28 27 anasss P N N 0 P pCnt N = ι z | x y N = x y z = S T