Metamath Proof Explorer


Theorem pcxcl

Description: Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pcxcl P N P pCnt N *

Proof

Step Hyp Ref Expression
1 pc0 P P pCnt 0 = +∞
2 pnfxr +∞ *
3 1 2 eqeltrdi P P pCnt 0 *
4 3 adantr P N P pCnt 0 *
5 oveq2 N = 0 P pCnt N = P pCnt 0
6 5 eleq1d N = 0 P pCnt N * P pCnt 0 *
7 4 6 syl5ibrcom P N N = 0 P pCnt N *
8 pcqcl P N N 0 P pCnt N
9 8 zred P N N 0 P pCnt N
10 9 rexrd P N N 0 P pCnt N *
11 10 expr P N N 0 P pCnt N *
12 7 11 pm2.61dne P N P pCnt N *