Metamath Proof Explorer


Theorem pcxnn0cl

Description: Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024)

Ref Expression
Assertion pcxnn0cl P N P pCnt N 0 *

Proof

Step Hyp Ref Expression
1 pc0 P P pCnt 0 = +∞
2 pnf0xnn0 +∞ 0 *
3 1 2 eqeltrdi P P pCnt 0 0 *
4 3 adantr P N P pCnt 0 0 *
5 oveq2 N = 0 P pCnt N = P pCnt 0
6 5 eleq1d N = 0 P pCnt N 0 * P pCnt 0 0 *
7 4 6 syl5ibrcom P N N = 0 P pCnt N 0 *
8 pczcl P N N 0 P pCnt N 0
9 8 nn0xnn0d P N N 0 P pCnt N 0 *
10 9 expr P N N 0 P pCnt N 0 *
11 7 10 pm2.61dne P N P pCnt N 0 *