Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
The prime count function
pczcl
Next ⟩
pccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
pczcl
Description:
Closure of the prime power function.
(Contributed by
Mario Carneiro
, 23-Feb-2014)
Ref
Expression
Assertion
pczcl
⊢
P
∈
ℙ
∧
N
∈
ℤ
∧
N
≠
0
→
P
pCnt
N
∈
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
=
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
2
1
pczpre
⊢
P
∈
ℙ
∧
N
∈
ℤ
∧
N
≠
0
→
P
pCnt
N
=
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
3
prmuz2
⊢
P
∈
ℙ
→
P
∈
ℤ
≥
2
4
eqid
⊢
x
∈
ℕ
0
|
P
x
∥
N
=
x
∈
ℕ
0
|
P
x
∥
N
5
4
1
pcprecl
⊢
P
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
N
≠
0
→
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
∈
ℕ
0
∧
P
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
∥
N
6
3
5
sylan
⊢
P
∈
ℙ
∧
N
∈
ℤ
∧
N
≠
0
→
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
∈
ℕ
0
∧
P
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
∥
N
7
6
simpld
⊢
P
∈
ℙ
∧
N
∈
ℤ
∧
N
≠
0
→
sup
x
∈
ℕ
0
|
P
x
∥
N
ℝ
<
∈
ℕ
0
8
2
7
eqeltrd
⊢
P
∈
ℙ
∧
N
∈
ℤ
∧
N
≠
0
→
P
pCnt
N
∈
ℕ
0