Metamath Proof Explorer


Theorem pczcl

Description: Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pczcl P N N 0 P pCnt N 0

Proof

Step Hyp Ref Expression
1 eqid sup x 0 | P x N < = sup x 0 | P x N <
2 1 pczpre P N N 0 P pCnt N = sup x 0 | P x N <
3 prmuz2 P P 2
4 eqid x 0 | P x N = x 0 | P x N
5 4 1 pcprecl P 2 N N 0 sup x 0 | P x N < 0 P sup x 0 | P x N < N
6 3 5 sylan P N N 0 sup x 0 | P x N < 0 P sup x 0 | P x N < N
7 6 simpld P N N 0 sup x 0 | P x N < 0
8 2 7 eqeltrd P N N 0 P pCnt N 0