Metamath Proof Explorer


Theorem pczdvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pczdvds P N N 0 P P pCnt N N

Proof

Step Hyp Ref Expression
1 eqid sup n 0 | P n N < = sup n 0 | P n N <
2 1 pczpre P N N 0 P pCnt N = sup n 0 | P n N <
3 2 oveq2d P N N 0 P P pCnt N = P sup n 0 | P n N <
4 prmuz2 P P 2
5 eqid n 0 | P n N = n 0 | P n N
6 5 1 pcprecl P 2 N N 0 sup n 0 | P n N < 0 P sup n 0 | P n N < N
7 6 simprd P 2 N N 0 P sup n 0 | P n N < N
8 4 7 sylan P N N 0 P sup n 0 | P n N < N
9 3 8 eqbrtrd P N N 0 P P pCnt N N