Metamath Proof Explorer


Theorem pczndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pczndvds P N N 0 ¬ P P pCnt N + 1 N

Proof

Step Hyp Ref Expression
1 eqid sup n 0 | P n N < = sup n 0 | P n N <
2 1 pczpre P N N 0 P pCnt N = sup n 0 | P n N <
3 2 oveq1d P N N 0 P pCnt N + 1 = sup n 0 | P n N < + 1
4 3 oveq2d P N N 0 P P pCnt N + 1 = P sup n 0 | P n N < + 1
5 prmuz2 P P 2
6 eqid n 0 | P n N = n 0 | P n N
7 6 1 pcprendvds P 2 N N 0 ¬ P sup n 0 | P n N < + 1 N
8 5 7 sylan P N N 0 ¬ P sup n 0 | P n N < + 1 N
9 4 8 eqnbrtrd P N N 0 ¬ P P pCnt N + 1 N