Metamath Proof Explorer


Theorem pczndvds2

Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pczndvds2 P N N 0 ¬ P N P P pCnt N

Proof

Step Hyp Ref Expression
1 prmuz2 P P 2
2 eqid n 0 | P n N = n 0 | P n N
3 eqid sup n 0 | P n N < = sup n 0 | P n N <
4 2 3 pcprendvds2 P 2 N N 0 ¬ P N P sup n 0 | P n N <
5 1 4 sylan P N N 0 ¬ P N P sup n 0 | P n N <
6 3 pczpre P N N 0 P pCnt N = sup n 0 | P n N <
7 6 oveq2d P N N 0 P P pCnt N = P sup n 0 | P n N <
8 7 oveq2d P N N 0 N P P pCnt N = N P sup n 0 | P n N <
9 8 breq2d P N N 0 P N P P pCnt N P N P sup n 0 | P n N <
10 5 9 mtbird P N N 0 ¬ P N P P pCnt N