| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pczpre.1 |
|
| 2 |
|
zq |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4
|
pcval |
|
| 6 |
2 5
|
sylanr1 |
|
| 7 |
|
simprl |
|
| 8 |
7
|
zcnd |
|
| 9 |
8
|
div1d |
|
| 10 |
9
|
eqcomd |
|
| 11 |
|
prmuz2 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
pcpre1 |
|
| 16 |
11 12 15
|
sylancl |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
eqid |
|
| 20 |
19 1
|
pcprecl |
|
| 21 |
11 20
|
sylan |
|
| 22 |
21
|
simpld |
|
| 23 |
22
|
nn0cnd |
|
| 24 |
23
|
subid1d |
|
| 25 |
18 24
|
eqtr2d |
|
| 26 |
|
1nn |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
eqeq2d |
|
| 29 |
|
breq2 |
|
| 30 |
29
|
rabbidv |
|
| 31 |
30
|
supeq1d |
|
| 32 |
31 1
|
eqtr4di |
|
| 33 |
32
|
oveq1d |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
28 34
|
anbi12d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
|
breq2 |
|
| 39 |
38
|
rabbidv |
|
| 40 |
39
|
supeq1d |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
37 42
|
anbi12d |
|
| 44 |
35 43
|
rspc2ev |
|
| 45 |
26 44
|
mp3an2 |
|
| 46 |
7 10 25 45
|
syl12anc |
|
| 47 |
|
ltso |
|
| 48 |
47
|
supex |
|
| 49 |
1 48
|
eqeltri |
|
| 50 |
3 4
|
pceu |
|
| 51 |
2 50
|
sylanr1 |
|
| 52 |
|
eqeq1 |
|
| 53 |
52
|
anbi2d |
|
| 54 |
53
|
2rexbidv |
|
| 55 |
54
|
iota2 |
|
| 56 |
49 51 55
|
sylancr |
|
| 57 |
46 56
|
mpbid |
|
| 58 |
6 57
|
eqtrd |
|