Metamath Proof Explorer


Theorem peano2nn

Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion peano2nn A A + 1

Proof

Step Hyp Ref Expression
1 frfnom rec x V x + 1 1 ω Fn ω
2 fvelrnb rec x V x + 1 1 ω Fn ω A ran rec x V x + 1 1 ω y ω rec x V x + 1 1 ω y = A
3 1 2 ax-mp A ran rec x V x + 1 1 ω y ω rec x V x + 1 1 ω y = A
4 ovex rec x V x + 1 1 ω y + 1 V
5 eqid rec x V x + 1 1 ω = rec x V x + 1 1 ω
6 oveq1 z = x z + 1 = x + 1
7 oveq1 z = rec x V x + 1 1 ω y z + 1 = rec x V x + 1 1 ω y + 1
8 5 6 7 frsucmpt2 y ω rec x V x + 1 1 ω y + 1 V rec x V x + 1 1 ω suc y = rec x V x + 1 1 ω y + 1
9 4 8 mpan2 y ω rec x V x + 1 1 ω suc y = rec x V x + 1 1 ω y + 1
10 peano2 y ω suc y ω
11 fnfvelrn rec x V x + 1 1 ω Fn ω suc y ω rec x V x + 1 1 ω suc y ran rec x V x + 1 1 ω
12 1 10 11 sylancr y ω rec x V x + 1 1 ω suc y ran rec x V x + 1 1 ω
13 df-nn = rec x V x + 1 1 ω
14 df-ima rec x V x + 1 1 ω = ran rec x V x + 1 1 ω
15 13 14 eqtri = ran rec x V x + 1 1 ω
16 12 15 eleqtrrdi y ω rec x V x + 1 1 ω suc y
17 9 16 eqeltrrd y ω rec x V x + 1 1 ω y + 1
18 oveq1 rec x V x + 1 1 ω y = A rec x V x + 1 1 ω y + 1 = A + 1
19 18 eleq1d rec x V x + 1 1 ω y = A rec x V x + 1 1 ω y + 1 A + 1
20 17 19 syl5ibcom y ω rec x V x + 1 1 ω y = A A + 1
21 20 rexlimiv y ω rec x V x + 1 1 ω y = A A + 1
22 3 21 sylbi A ran rec x V x + 1 1 ω A + 1
23 22 15 eleq2s A A + 1