Metamath Proof Explorer


Theorem peano2uzr

Description: Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006)

Ref Expression
Assertion peano2uzr M N M + 1 N M

Proof

Step Hyp Ref Expression
1 eluzelcn N M + 1 N
2 ax-1cn 1
3 npcan N 1 N - 1 + 1 = N
4 1 2 3 sylancl N M + 1 N - 1 + 1 = N
5 4 adantl M N M + 1 N - 1 + 1 = N
6 eluzp1m1 M N M + 1 N 1 M
7 peano2uz N 1 M N - 1 + 1 M
8 6 7 syl M N M + 1 N - 1 + 1 M
9 5 8 eqeltrrd M N M + 1 N M