Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
peano2uzr
Next ⟩
uzaddcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
peano2uzr
Description:
Reversed second Peano axiom for upper integers.
(Contributed by
NM
, 2-Jan-2006)
Ref
Expression
Assertion
peano2uzr
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
∈
ℤ
≥
M
Proof
Step
Hyp
Ref
Expression
1
eluzelcn
⊢
N
∈
ℤ
≥
M
+
1
→
N
∈
ℂ
2
ax-1cn
⊢
1
∈
ℂ
3
npcan
⊢
N
∈
ℂ
∧
1
∈
ℂ
→
N
-
1
+
1
=
N
4
1
2
3
sylancl
⊢
N
∈
ℤ
≥
M
+
1
→
N
-
1
+
1
=
N
5
4
adantl
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
-
1
+
1
=
N
6
eluzp1m1
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
−
1
∈
ℤ
≥
M
7
peano2uz
⊢
N
−
1
∈
ℤ
≥
M
→
N
-
1
+
1
∈
ℤ
≥
M
8
6
7
syl
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
-
1
+
1
∈
ℤ
≥
M
9
5
8
eqeltrrd
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
∈
ℤ
≥
M