Metamath Proof Explorer


Theorem peano2uzs

Description: Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis peano2uzs.1 Z = M
Assertion peano2uzs N Z N + 1 Z

Proof

Step Hyp Ref Expression
1 peano2uzs.1 Z = M
2 peano2uz N M N + 1 M
3 2 1 eleqtrrdi N M N + 1 Z
4 3 1 eleq2s N Z N + 1 Z