| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nn |
|
| 2 |
|
df-ima |
|
| 3 |
1 2
|
eqtri |
|
| 4 |
|
frfnom |
|
| 5 |
4
|
a1i |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
eleq1d |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
|
ax-1cn |
|
| 13 |
|
fr0g |
|
| 14 |
12 13
|
ax-mp |
|
| 15 |
|
simpl |
|
| 16 |
14 15
|
eqeltrid |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
18
|
rspccv |
|
| 20 |
19
|
ad2antlr |
|
| 21 |
|
ovex |
|
| 22 |
|
eqid |
|
| 23 |
|
oveq1 |
|
| 24 |
|
oveq1 |
|
| 25 |
22 23 24
|
frsucmpt2 |
|
| 26 |
21 25
|
mpan2 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
adantl |
|
| 29 |
20 28
|
sylibrd |
|
| 30 |
29
|
expcom |
|
| 31 |
7 9 11 16 30
|
finds2 |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
ralrimiv |
|
| 34 |
|
ffnfv |
|
| 35 |
5 33 34
|
sylanbrc |
|
| 36 |
35
|
frnd |
|
| 37 |
3 36
|
eqsstrid |
|