Metamath Proof Explorer


Theorem peano5nni

Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of Apostol p. 34. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion peano5nni 1 A x A x + 1 A A

Proof

Step Hyp Ref Expression
1 df-nn = rec n V n + 1 1 ω
2 df-ima rec n V n + 1 1 ω = ran rec n V n + 1 1 ω
3 1 2 eqtri = ran rec n V n + 1 1 ω
4 frfnom rec n V n + 1 1 ω Fn ω
5 4 a1i 1 A x A x + 1 A rec n V n + 1 1 ω Fn ω
6 fveq2 y = rec n V n + 1 1 ω y = rec n V n + 1 1 ω
7 6 eleq1d y = rec n V n + 1 1 ω y A rec n V n + 1 1 ω A
8 fveq2 y = z rec n V n + 1 1 ω y = rec n V n + 1 1 ω z
9 8 eleq1d y = z rec n V n + 1 1 ω y A rec n V n + 1 1 ω z A
10 fveq2 y = suc z rec n V n + 1 1 ω y = rec n V n + 1 1 ω suc z
11 10 eleq1d y = suc z rec n V n + 1 1 ω y A rec n V n + 1 1 ω suc z A
12 ax-1cn 1
13 fr0g 1 rec n V n + 1 1 ω = 1
14 12 13 ax-mp rec n V n + 1 1 ω = 1
15 simpl 1 A x A x + 1 A 1 A
16 14 15 eqeltrid 1 A x A x + 1 A rec n V n + 1 1 ω A
17 oveq1 x = rec n V n + 1 1 ω z x + 1 = rec n V n + 1 1 ω z + 1
18 17 eleq1d x = rec n V n + 1 1 ω z x + 1 A rec n V n + 1 1 ω z + 1 A
19 18 rspccv x A x + 1 A rec n V n + 1 1 ω z A rec n V n + 1 1 ω z + 1 A
20 19 ad2antlr 1 A x A x + 1 A z ω rec n V n + 1 1 ω z A rec n V n + 1 1 ω z + 1 A
21 ovex rec n V n + 1 1 ω z + 1 V
22 eqid rec n V n + 1 1 ω = rec n V n + 1 1 ω
23 oveq1 y = n y + 1 = n + 1
24 oveq1 y = rec n V n + 1 1 ω z y + 1 = rec n V n + 1 1 ω z + 1
25 22 23 24 frsucmpt2 z ω rec n V n + 1 1 ω z + 1 V rec n V n + 1 1 ω suc z = rec n V n + 1 1 ω z + 1
26 21 25 mpan2 z ω rec n V n + 1 1 ω suc z = rec n V n + 1 1 ω z + 1
27 26 eleq1d z ω rec n V n + 1 1 ω suc z A rec n V n + 1 1 ω z + 1 A
28 27 adantl 1 A x A x + 1 A z ω rec n V n + 1 1 ω suc z A rec n V n + 1 1 ω z + 1 A
29 20 28 sylibrd 1 A x A x + 1 A z ω rec n V n + 1 1 ω z A rec n V n + 1 1 ω suc z A
30 29 expcom z ω 1 A x A x + 1 A rec n V n + 1 1 ω z A rec n V n + 1 1 ω suc z A
31 7 9 11 16 30 finds2 y ω 1 A x A x + 1 A rec n V n + 1 1 ω y A
32 31 com12 1 A x A x + 1 A y ω rec n V n + 1 1 ω y A
33 32 ralrimiv 1 A x A x + 1 A y ω rec n V n + 1 1 ω y A
34 ffnfv rec n V n + 1 1 ω : ω A rec n V n + 1 1 ω Fn ω y ω rec n V n + 1 1 ω y A
35 5 33 34 sylanbrc 1 A x A x + 1 A rec n V n + 1 1 ω : ω A
36 35 frnd 1 A x A x + 1 A ran rec n V n + 1 1 ω A
37 3 36 eqsstrid 1 A x A x + 1 A A